Skip to main content
Log in

Dielectric relaxations in solution-grown polycarbonate thin films.—I

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The dielectric relaxations in solution-grown polycarbonate thin films have been studied as a function of poling field (1.0·105÷÷7.0·105) V/m, temperature (310÷400) K, time (3.60·103÷2.88·104) s, film thickness (1÷50) μm, nature of the vacuum-deposited electrode metals, namely silver, aluminium and indium, used during polarization and the different heating rates of depolarization (0.05÷0.17) K/s by the thermally stimulated discharge current technique. Three relaxation processes at 352, 436 and 483 K are observed to have activation energies (0.52±0.02), (0.78±0.02) and (1.45±0.02) eV and relaxation times at 300 K of 4.17·103, 2.61·106 and 3.24·1011 s, respectively. The magnitude of the maximum current corresponding to the peak at 352 K and the charge associated with it increases linearly with the field and it is attributed to the movement of the phenyl group with the molecular motion of the carbonate group of the main chain. The peak at 436 K is attributed to the detrapping of the charge carriers, whereas the peak at 483 K is due to the trapped space charges which are a resultant of the already present carriers and the carriers injected from the electrodes during polarization. The increase in the activation energies associated with peaks at 352 and 436 K and their shift towards higher temperatures with the increase in the poling temperature and time suggest that these peaks have a distribution of relaxation times.

Riassunto

Si sono studiati i rilassamenti dielettrici in sottili film di policarbonati cresciuti in soluzione, in funzione di campi con poli (1.0·105÷7·105) V/m, della temperatura (310÷400) K, del tempo (3.60·103÷2.88·104) s, dello spessore del film (1÷50)μm, della natura dei metalli degli elettrodi depositati sotto vuoto, cioè argento, alluminio e indio, usati durante la polarizzazione, e i diversi tassi di riscaldamento di depolarizzazione (0.05÷0.17) K/s per mezzo della tecnica della corrente di scarica stimolata termicamente. Si osservano tre processi di rilassamento a 352, 436 e 483 K con energie di attivazione (0.52±0.02), (0.78±0.02) e (1.45±0.02) e V e tempi di rilassamento a 300 K di 4.17·103, 2.61·106 e 3.24·1011, rispettivamente. La grandezza della corrente massima che corrisponde al picco a 352 K e la carica associata ad essa aumenta linearmente con il campo ed è attribuita al movimento del radicale fenile col moto molecolare del radicale carbonato della catena principale. Il picco a 436 K è attribuito allo avincolamento dei trasportatori di carica, mentre il picco al 483 K è dovuto alle cariche spaziali intrappolate che sono la risultante dei trasportatori già presenti e dei trasportatori iniettati dagli elettrodi durante la polarizzazione. L’aumento nelle energie di attivazione associate a picchi a 352 e 436 K e i loro spostamenti verso temperature più alte con l’aumento nella temperature e nel tempo di polatura suggeriscono che questi picchi abbiano una distribuzione di tempi di rilassamento.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. C. Pillai, K. Jain andV. K. Jain:Phys. Status Solidi A,13, 341 (1972);Nuovo Cimento B,3, 225 (1971).

    Article  ADS  Google Scholar 

  2. J. Vanderschueren andA. Linkens:J. Polym. Sci. Polymer. Phys. Ed.,16, 223 (1978).

    Article  ADS  Google Scholar 

  3. J. Van Tornhout:Thermally Stimulated Discharge of Polymer Electrets (Amsterdam, 1975);Polym. J.,2, 173 (1971).

  4. J. Vanderschueren:J. Polym. Sci. Polym. Phys. Ed.,12, 991 (1974).

    Article  ADS  Google Scholar 

  5. P. C. Mehendru, K. Jain andP. Mehendru:J. Phys. D,9, 83 (1976);10, 729 (1977).

    Article  ADS  Google Scholar 

  6. N. P. Gupta, K. Jain andP. C. Mehendru:J. Chem. Phys.,68, 1785 (1978).

    Article  ADS  Google Scholar 

  7. M. M. Perlman:J. Appl. Phys.,42, 2645 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  8. O. Yano:J. Polym. Sci. Polym. Phys. Ed.,16, 679 (1978).

    Article  ADS  Google Scholar 

  9. Y. Aoki andJ. O. Brittain:J. Appl. Polym. Sci.,20, 2879 (1976);J. Polym. Sci. Polym. Phys. Ed.,14, 1297 (1976);15, 199 (1977).

    Article  Google Scholar 

  10. A. Linkens andJ. Vanderschueren:J. Electrostat.,3, 149 (1977);Polym. Lett.,15, 41 (1977).

    Article  Google Scholar 

  11. A. C. Rastogi andK. L. Chopra:Thin Solid Films,18, 187 (1973).

    Article  ADS  Google Scholar 

  12. H. Schnell:Chemistry and Physics of Polycarbonates (New York, N. Y., 1964).

  13. K. Jain, A. C. Rastogi andK. L. Chopra:Phys. Status Solidi A,20, 167 (1973).

    Article  ADS  Google Scholar 

  14. P. K. C. Pillai, K. Jain andV. K. Jain:Phys. Lett. A,39, 216 (1972).

    Article  ADS  Google Scholar 

  15. G. F. J. Garlick andA. F. Gibson:Proc. Phys. Soc. London,60, 574 (1948).

    Article  ADS  Google Scholar 

  16. L. I. Gross-Weiner:J. Appl. Phys.,24, 1306 (1953).

    Article  ADS  Google Scholar 

  17. C. Bucci andR. Fieschi:Phys. Rev. Lett.,12, 16 (1966).

    Article  ADS  Google Scholar 

  18. W. Hoogenstraten:Philips Res. Rep.,13, 515 (1958).

    Google Scholar 

  19. E. Sacher:J. Macromol. Sci. B,10, 319 (1974).

    Article  Google Scholar 

  20. G. Locati andA. V. Tobolsky:Adv. Mol. Relaxation Processes,1, 375 (1970).

    Article  Google Scholar 

  21. A. K. Johnscher:Thin Solid Films,1, 213 (1967).

    Article  ADS  Google Scholar 

  22. P. Fischer andP. Rohl:J. Polym. Sci. Polym. Phys. Ed.,13, 1247 (1975);T. Hino:Jpn. J. Appl. Phys.,12, 611 (1973).

    Article  Google Scholar 

  23. N. P. Gupta, K. Jain andP. C. Mehendru:Thin Solid Films, accepted for publication.

  24. A. L. Renninger, G. G. Wicks andD. R. Ohlmann:J. Polym. Sic. Polym. Phys. Ed.,13, 1247 (1975).

    Article  ADS  Google Scholar 

  25. S. Ikeda andK. Matsuda:Jpn. J. Appl. Phys.,15, 963 (1976).

    Article  ADS  Google Scholar 

  26. G. Caserta andA. Serra:J. Appl. Phys.,42, 3778 (1971).

    Article  ADS  Google Scholar 

  27. H. Geiger andK. Scheel:Handbuch der Physik, Vol.23 (Berlin, 1943).

  28. G. Pfestorf andE. F. Richter:Phys. Z.,39, 141 (1938).

    Google Scholar 

  29. D. K. Davies:Br. J. Appl. Phys.,2, 1533 (1969).

    ADS  Google Scholar 

  30. P. C. Mehendru, K. Jain andP. Mehendru:J. Phys. D,11, 1431 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, K., Agrawal, J.P. & Mehendru, P.C. Dielectric relaxations in solution-grown polycarbonate thin films.—I. Nuov Cim B 55, 123–142 (1980). https://doi.org/10.1007/BF02728382

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728382

Navigation