Skip to main content
Log in

Design of a resonant gravitational-wave detector with quantum-limited sensitivity

Конструкция резонансного детектора гравитационных волн с чувствительностяю, ограниченной квантовыми эффектами

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

It is shown that aresonant transducer is indispensable in a wide range of experimental conditions in order to accomplish optimum matching between a cryogenic antenna and a low-noise amplifier. Noise characteristics of a d.c. SQUID are analyzed and an improved design of a point contact d.c. SQUID is described. Conditions for transducer matching and detectability of a gravitational-wave signal are derived for a system employing a d.c. SQUID. It appears that a d.c. SQUID operating at the quantum-limited sensitivity could be realized in our proposed design and matched to a massive aluminum antenna cooled to 0.05 K by using a resonant superconducting inductive transducer. Presently achievable detector parameters are shown to be sufficient to allow a detection sensitivity corresponding to a resolution of a few photons in the antenna, the ultimate quantum-mechanical limit derived for an antenna instrumented with a linear-motion detector.

Riassunto

Si mostra che un trasduttore un trasduttore risonante è indispensabile in un ampio lasso di condizioni sperimentali allo scopo di ottenere condizioni operative ottimali tra un’antenna criogenica e un amplificatore a basso disturbo. Si analizzano caratteristiche di disturbo di uno SQUID d.c. e si descrive uno schema migliorato di uno SQUID d.c. a contatto puntiforme. Si derivano condizioni per l’uso del trasduttore e per la determinazione di un segnale di onda gravitazionale per un sistema che impiega lo SQUID d.c. Appare che uno SQUID d.c. che opera a sensibilità quanto-limitata potrebbe essere realizzato nello schema da noi proposto e collegato a un’antenna di alluminio massiva riscaldata a 0.05 K usando un trasduttore induttivo risonante superconduttore. Si mostra che i parametri del detettore attualmente ottenibili sono sufficienti per permettere una sensibilità di detezione corrispondente a una risoluzione di pochi fononi nell’antenna, il limite quantomeccanico definitivo derivato per un’antenna attrezzata con un detettore con moto lineare.

Резюме

Показывается, чторезонансный датчик необходим в широкой области зкспериментальных условий, чтобы получить оптимальное согласование межди криогенной антенной и усилителем. Анализируются характеристики шумов в dc SQUID и описывается улучшенная конструкция dc SQUID. Для системы, использующейся dc SQUID, выводятся условия для согласования датчика и для обнаружимости сигнала от гравитационных волн. Оказывается, что dc SQUID с чувствительностьу, ограниченной квантовыми эффектами, может быть реализован в предложенной нами конструкции и может быть согласован с массивной алюмниевой антенной, охлажденной до 0.05 К, используя резонансный сверхпроводящий нндуктивныи датчик. Показывается, что параметры детектора позволяют определить чувствительность детектирования, соответствующую разрешению нескольких фононов в антенне, т.е. соответствующую квантовомеханическому пределу.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Heffner:Proc. IRE,50, 1604 (1962).

    Article  MATH  Google Scholar 

  2. J. Weber:Phys. Rev.,94, 215 (1954).

    Article  ADS  Google Scholar 

  3. J. Weber:Phys. Rev.,108, 537 (1957).

    Article  ADS  Google Scholar 

  4. R. P. Giffard:Phys. Rev. D,14, 2478 (1976).

    Article  ADS  Google Scholar 

  5. V. B. Braginsky: lectures presented at theInternational School of Cosmology and Gravitation, Erice, Sicily, 1975 (unpublished).

  6. V. B. Braginsky andY. I. Vorontsov:Usp. Fiz. Nauk,114, 41 (1974) (English translation:Sov. Phys. Usp.,17, 644 (1975)). AlsoV. B. Braginsky, Y. I. Vorontsov andF. I. Halili:Ž. Ėksp. Teor. Fiz.,27, 296 (1978).

    Article  ADS  MATH  Google Scholar 

  7. W. G. Unruh:Phys. Rev. D,17, 1180 (1978).

    Article  ADS  Google Scholar 

  8. K. S. Thorne, R. P. Drever, C. M. Caves, M. Zimmerman andV. D. Sandberg:Phys. Rev. Lett.,40, 667 (1978).

    Article  ADS  Google Scholar 

  9. J. N. Hollenhorst:Phys. Rev. D,19, 1669 (1979).

    Article  ADS  Google Scholar 

  10. S. P. Boughn, W. M. Fairbank, R. P. Giffard, J. N. Hollenhorst, M. S. McAshan, H. J. Paik andR. C. Taber:Phys. Rev. Lett.,38, 454 (1977).

    Article  ADS  Google Scholar 

  11. S. P. Boughn, W. M. Fairbank, R. P. Giffard, J. N. Hollenhorst, M. S. McAshan, H. J. Paik andR. C. Taber: inProceedings of the Accademia Nazionale dei Lincei International Symposium on Experimental Gravitation, Vol.34, edited byB. Bertotti (Roma, 1977).

  12. H. J. Paik:J. Appl. Phys.,47, 1168 (1976).

    Article  ADS  Google Scholar 

  13. D. H. Douglass: inProceedings of the Accademia Nazionale dei Lincei, International Symposium on Experimental Gravitation, Vol.34, edited byB. Bertotti (Roma, 1977).

  14. A. V. Gusev andV. N. Rudenko:Ž. Ėksp. Teor. Fiz.,74, 819 (1978) (English translation:Sov. Phys. JETP,47, 428 (1978)).

    ADS  Google Scholar 

  15. H. Hirakawa: private communication:Ž. Ėksp. Teor. Fiz.,74, 819 (1978). Also seeT. Suzuki, K. Tsubono andH. Hirakawa:Phys. Lett. A,67, 2 (1978).

    Google Scholar 

  16. V. B. Braginsky: inGravitational Radiation and Gravitational Collapse, edited byC. Morette-DeWitt (Dordrecht, 1974).

  17. G. A. Tamman: inSupernovae and Supernova Remnants, edited byC. B. Cosmovici (Dordrecht, 1974).

  18. This is in line with Giffard’s original treatment of the problem inR. P. Giffard:Sensitivity limit of resonant gravitational-wave detectors using conventional amplifiers (unpublished).

  19. J.-P. Richard: talk given at theXXVII International Astronautical Congress (Anaheim, Cal., 1976). AlsoActa Astronaut.,5, 63 (1978).

  20. D. H. Douglass andW. Johnson: private communications.

  21. A piezoelectric transducer could provide a higher coupling coefficient as perhaps the only exception. However, it is not useful for our discussion because of its intrinsically lowQ (Q E ∼104).

  22. H. J. Paik: inExperimental Gravitation, edited byB. Bertotti (New York, N. Y., 1974).

  23. H. J. Paik:Analysis and development of a very sensitive low temperature gravitational radiation detector, Ph. D. thesis, Stanford University (1974), unpublished. HEPL Report No. 743.

  24. A recently suggested «dual-mode» resonant transducer might allow a resolution time τ≃0.001 s and, therefoire, 1.5 K operation for a quantum-limited detector. SeeJ.-P. Richard:Gravitational radiation and collapsed objects, inProceedings of the Einstein Centenary Summer School (Perth, Australia, 1979).

  25. J. Clarke, W. M. Goubau andM. B. Ketchen:J. Low Temp. Phys.,25, 99 (1976).

    Article  ADS  Google Scholar 

  26. C. D. Tesche andJ. Clark:J. Low Temp. Phys.,29, 301 (1977).

    Article  ADS  Google Scholar 

  27. M. B. Ketchen, J. Clark andW. M. Goubau: inFuture Trends in Superconductive Electronics, edited byB. S. Deaver jr.,C. M. Falco, J. H. Harris andS. A. Wolf (New York, N. Y., 1978).

  28. E. L. Hu, L. D. Jackel, R. W. Epworth andL. A. Fetter: inProceedings of Applied Superconductivity Conference (Pittsburgh, Pa., 1978).

  29. L. D. Jackel: private communication.

  30. D. E. McCumber:J. Appl. Phys.,39, 3113 (1968).

    Article  ADS  Google Scholar 

  31. A. J. Dahm, A. Denenstein, D. N. Langenberg, W. H. Parker, D. Rogovin andD. J. Scalapino:Phys. Rev. Lett.,22, 1416 (1969).

    Article  ADS  Google Scholar 

  32. P. K. Tien andJ. Gordon:Phys. Rev.,129, 647 (1963).

    Article  ADS  Google Scholar 

  33. J. E. Zimmerman:J. Appl. Phys.,42, 30 (1971).

    Article  ADS  Google Scholar 

  34. J. H. Claassen andP. L. Richards:J. Appl. Phys.,49, 4130 (1978).

    Article  ADS  Google Scholar 

  35. K. K. Likharev andV. K. Semenov:Ž. Eksp. Teor. Fiz. Pis’ma Red.,15, 625 (1972) (English translation:JETP Lett.,15, 442 (1972)).

    ADS  Google Scholar 

  36. R. P. Giffard, P. F. Michelson andR. J. Soulen jr.: inProceedings of the Applied Superconductivity Conference (Pittsburgh, Pa., 1978).

  37. R. E. Burgess: inProceedings of the Conference on Fluctuations in Superconductors, edited byW. S. Goree andF. Chilton (Menlo Park, Cal., 1968).

  38. C. D. Tesche andJ. Clarke:J. Low Temp. Phys., submitted for publication.

  39. J. Clarke, C. D. Tesche andR. P. Giffard:J. Low Temp. Phys., submitted for publication.

  40. J. E. Zimmerman:J. Appl. Phys.,42, 4483 (1971).

    Article  ADS  Google Scholar 

  41. W. C. Stewart:Appl. Phys. Lett.,12, 277 (1968).

    Article  ADS  Google Scholar 

  42. J. N. Hollenhorst andR. P. Giffard: inProceedings of the Applied Superconductivity Conference (Pittsburgh, Pa., 1978).

  43. J.-P. Richard:Monocrystals for the study of gravity phenomena, paper presented at theV International Symposium on Space Relativity, Dubrovnik, 1978 (unpublished).

  44. E. R. Mapoles: private communications.

  45. G. B. Gibbons andS. W. Hawking:Phys. Rev. D,4, 2191 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Work partly supported by the National Science Foundation.

The original manuscript of this paper was attached as an appendix to a research proposal to the National Science Foundation (December 1978) and copies of the preprints distributed in January 1979.

Traduzione a cura della Redazione.

Перевебено ребакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paik, H.J. Design of a resonant gravitational-wave detector with quantum-limited sensitivity. Nuov Cim B 55, 15–36 (1980). https://doi.org/10.1007/BF02728373

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728373

Navigation