Skip to main content
Log in

Relaxation of dislocations in copper

  • Published:
Il Nuovo Cimento (1955-1965)

An Erratum to this article was published on 01 March 1960

Summary

Frequency and attenuation of standing waves have been measured in polyerystalline-copper in the frequency range between 1.8 kHz and 6.5 MHz as a function of temperature from 60°K to 300°K. Owing to the wide frequency range, the activation energyW and the limiting frequencyω A associated with the attenuation peak due to dislocations have been evaluated with considerable accuracy. The values obtained (W=0.122 eV (molecule)−1,ω A =23.9·1011 s−1) agree satisfactorily with those computed according to the theories given bySeeger, Donth andPfaff. The shape of the attenuationvs. temperature curves shows that the spectrum of relaxation frequencies is a bell-shaped line with its maximum atω=ω m; each frequency of the spectrum is associated with the value ofW given above. The height of the attenuation peaks has been compared with the total relaxation exhibited by the frequencyvs. temperature curves. Below 100 kHz the results agree with the theory of relaxation effects with a continuous spectrum. At higher frequencies the polycrystalline structure gives rise to an attenuation larger than the values that could be expected from the frequency relaxation measurements. The effects of heat treatments have also been investigated, showing that the attenuation and the frequency relaxation are both reduced by treatments whose temperature does not exceed 500 °K, whilstω Ais slightly increased. Treatments at higher temperatures give rise to comparatively large changes in attenuation and frequency, which do not seem directly related to the pre-existing dislocations. These changes are reversible and can be cancelled by a suitable amount of cold work.

Riassunto

Si sono misurati la frequenza e la dissipazione di onde elastiche nel rame policristallino fra 1.8 kHz e 6.5 MHz in funzione della temperatura nel campo da 60 °K a 300 °K. Si è potuto così calcolare con considerevole precisione, sia l’energia di attivazioneW, sia la frequenza limiteω A, associate al massimo di assorbimento provocato dalle dislocazioni. I valori ottenuti (W=0.122 eV (molecole)−1;ω A=23.9·1011 s−1) concordano in modo soddisfacente con quelli calcolati con la teoria di Seeger, Donth e Pfaff. La forma delle curve attenuazione-temperatura mostra che lo spettro delle frequenze di rilassamento è rappresentabile con una curva a campana che ha il suo massimo per il valoreω=ω m e che ciascuna frequenza dello spettro è associata con il medesimo valore dell’energia di attivazione sopra riportato. I valori massimi della dissipazione sono stati confrontati con il rilassamento totale che si osserva nelle curve frequenza-temperatura. Per le vibrazioni di frequenza al disotto di 100 kHz i risultati concordano con la teoria degli effetti di rilassamento aventi uno spettro continuo. A frequenze più elevate, la struttura policristallina del materiale dà invece origine ad una dissipazione maggiore di quella che corrisponderebbe ai valori del rilassamento. Sono stati anche studiati gli effetti provocati da trattamenti termici diversi e si è visto che, se durante il trattamento la temperatura non supera i 500 °K, si ottiene una riduzione degli effetti di rilassamento e, contemporaneamente,ω A aumenta leggermente. Se durante il trattamento si raggiungono temperature più elevate, si provocano, nel rame policristallino, variazioni relativamente grandi della dissipazione e della frequenza delle onde elastiche, le quali sembrano non essere legate direttamente alle dislocazioni preesistenti. Queste variazioni possono essere cancellate con un opportuno incrudimento del materiale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

ReferencesReferences

  1. For a bibliography see:P. G. Bordoni:Proc. I.C.A. Congress, 101 (1956);P. G. Bordoni andM. Nuovo:Effect of crystal dislocations upon vibrations (Contribution to the Palais de la Science of the Exp. Univ. Bruxelles).

  2. P. G. Bordoni:Journ. Acoust. Soc. Amer.,26, 495 (1954);Ric. Scient.,23, 1193 (1953).

    Article  ADS  Google Scholar 

  3. See for instance:Lord Rayleigh:The Theory of Sound,1, nn. 221, 218, 2nd ed. (London, 1937), ch. x, pp. 359, 366;H. Lamb:The Dynamical Theory of Sound, 2nd ed. (London, 1925), ch. v. n. 56, pp. 154, 157;S. Timoshenko:Vibration Problems in Engineering, 3rd ed. (New York, 1928), ch. iv, n. 56, pp. 316, 317.

  4. P. G. Bordoni:Nuovo Cimento,4, 177 (1947);Ric. Scient.,18, 103 (1948);P. G. Bordoni andM. Nuovo:Acustica,4, 184 (1954);Ric. Scient.,24, 560 (1954);Acustica,7, 1 (1957);Ric. Scient.,27, 695 (1957).

    Article  Google Scholar 

  5. See the last two papers quoted in footnote (4).

    Article  Google Scholar 

  6. P. G. Bordoni andM. Nuovo:Acustica,8, 351 (1958).

    Google Scholar 

  7. C. Hodgman:Handb. of Chem. and Phys., 30th ed. (Cleveland, 1948), p. 1954.

  8. See the paper quoted in footnote (8), p. 1979.

  9. The authors wish to thank Prof.M. Baccaredda, Director of the Laboratory of Industrial Chemistry of the University of Pisa, where the analysis was made.

  10. H. L. Caswell:Journ. Appl. Phys.,29, 1210 (1958).

    Article  ADS  Google Scholar 

  11. D. H. Niblett andJ. Wilks:Phil. Mag.,1, 415 (1956);2, 1427 (1957).

    Article  ADS  Google Scholar 

  12. A. Seeger:Phil. Mag.,1, 651 (1956). See alsoW. P. Mason:Physical Acoustics and the Properties of Solids, 1st ed. (New York, 1958), pp. 266, 271.

    Article  ADS  Google Scholar 

  13. See footnote (16).

    Article  ADS  Google Scholar 

  14. A. H. Cottrell:Dislocation and Plastic Flow in Crystals, 1st ed. (Oxford, 1953), pp. 62, 64.

  15. A. Seeger, H. Donth andF. Pfaff:Discussions Faraday Society,23, 19 (1957).

    Article  Google Scholar 

  16. C. Zener:Elasticity and Anelasticity of Metals, 1st ed. (Chicago, 1948), pp. 46, 47.

  17. R. M. Fuoss andJ. G. Kirkwood:Journ. Chem. Phys.,63, 385 (1941).

    Google Scholar 

  18. V. Paré:Experimental and Theoretical Study of Low Temperature Internal Friction in Copper. Cornell University, Department of Engineering Physics, Technical Report n. 4 (July 1958).

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02860209.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordoni, P.G., Nuovo, M. & Verdini, L. Relaxation of dislocations in copper. Nuovo Cim 14, 273–314 (1959). https://doi.org/10.1007/BF02728319

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728319

Navigation