Il Nuovo Cimento B (1971-1996)

, Volume 29, Issue 2, pp 270–276 | Cite as

Bell's theorem and world process

  • H. P. Stapp
Article

Summary

The noncausal structure events demanded by Bell's theorem are shown to follow naturally from a theory of events similar to White-head's. In spite of this noncausal structure on the level of individu al events the macroscopic causality structure observed in Nature at the statistical level holds. Quantum theory itself emerges naturally, along with the basic analyticity properties of theS-matrix.

Теорема Белла и мировой процесс

Резюме

Показывается, что события с непричинной структурой, требуемые согласно теореме Белла, возникают естественным образом из теорий событий, аналогичной теории Уайтхеда. Несмотря на указанную непричинную структуру на уровне индивидуальных событий, на статистическом уровне имеет место структура макроскопической причинности, которая наблюдается в природе. Квантовая теория возникает естественным образом, наряду с основными свойствами аналитичностиS матрицы.

Riassunto

Si mostra che gli eventi di struttura non casuale richiesti dal teorema di Bell seguono naturalmente da una teoria degli eventi simile a quella di Whitehead. Nonostante questa struttura non casuale al livello dei singoli eventi, la struttura di casualità macroscopica osservata in Natura al livello statistico continua a valere. La stessa teoria quantistica emerge naturalmente assieme alle fondamentali proprietà di analiticità della matriceS.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H. P. Stapp:Amer. Journ. Phys.,40, 1098 (1972).ADSCrossRefGoogle Scholar
  2. (2).
    J. S. Bell:Physics,1, 195 (1964);H. P. Stapp:Phys. Rev. D,3, 1303 (1971), Sect.3;Correlation Experiments and the Nonvalidity of Ordinary Ideas about the Physical World (Berkeley, Cal., 1968);J. F. Clauser andM. A. Horne:Phys. Rev. D,10, 526 (1974). The statement of Bell's result given in the text is based on the results obtained in the second of the above references, where it is tacitly assumed that counter efficiences are not limited in principle. The principle of local causes is introduced and analyzed in those two works.Google Scholar
  3. (3).
    S. J. Freedman andJ. F. Clauser:Phys. Rev. Lett.,28, 938 (1972).ADSCrossRefGoogle Scholar
  4. (4).
    A. N. Whitehead:Process and Reality (New York, N. Y., 1929). Whitehead's theory differs from mine in at least two important respects. First, it rejects the serial or sequential ordering of events (or actual occasions or actual entities), and consequently is forced to the complication of a «contemporary world» comprised of an ill-defined multiplicity of actual entities. This complication in Whitehead's theory was engendered by precisely the notion of causality invalidated by Bell's theorem. Reversion to the serial notion restores unity to the world, thereby eliminating a serious structural and aesthetic defect in Whitehead's model. A second important difference is thatWhitehead describes details of the decision-making process, whereas I described general mathematical conditions on this process, thus securing a well-defined connection to mathematical physics.Google Scholar
  5. (5).
    H. P. Stapp: inCausality and physical theories, AIP Conference Proceedings, No. 16, edited byW. B. Rolnick, American Institute of Physics;D. Iagolnitzer andH. P. Stapp:Comm. Math. Phys.,14, 15 (1969).Google Scholar
  6. (6).
    H. P. Stapp:Foundations of S-matrix theory.—I:Theory and measurement, Lawrence Berkeley Laboratory Report LBL-759 Rev., June 13, 1972;D. Iagolnitzer:Introduction to S-matrix theory, C.E.N. Saclay.Google Scholar
  7. (7).
    I mean here that (E.3) of the first ref. (6),H. P. Stapp:Foundations of S-matrix theory—I:Theory and measurement, Lawrence Berkeley Laboratory Report LBL-759 Rev., June 13, 1972, together with its degenerate (classical) limit, is probably the only simple representation of a large class of functions satisfying the required classical conditions (E.2).Google Scholar
  8. (8).
    J. Coster andH. P. Stapp:Journ. Math. Phys.,11, 2743 (1970).MathSciNetADSCrossRefGoogle Scholar
  9. (9).
    I refer here to maximal analyticity. SeeG. F. Chew:S-Matrix Theory of Strong Interactions (New York, N. Y., 1961).Google Scholar
  10. (10).
    G. F. Chew:S-Matrix Theory of Strong Interactions (New York, N. Y., 1961);S. Mandelstam:Phys. Rev.,112, 1344 (1958);R. Blankenbecler, M. L. Goldberger, N. N. Khuri andS. B. Treiman:Ann. of Phys.,10, 62 (1960).Google Scholar
  11. (11).
    H. P. Stapp:Phys. Rev. D,3, 1303 (1971), Sect.11 and Appendix A.ADSCrossRefGoogle Scholar
  12. (12).
    G. F. Chew:The Analytic S-Matrix (New York, N. Y., 1966).Google Scholar

Copyright information

© Società Italiana di Fisica 1975

Authors and Affiliations

  • H. P. Stapp
    • 1
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeley

Personalised recommendations