Skip to main content
Log in

Asymptotic logarithmic behaviour and the complex dimensionality parameter

Асимптотическое логарифмическое поведение и комплексный параметр многомерности

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

We introduce the field operators characterized by the complex dimensionality parameterΔ=δ+. Physical field operators, which describe scale-invariant QFT approximately, are assumed to have a definite real partδ of the dimensionality parameter and can be represented as a superposition of the operators with different values of the imaginary partβ. We show that such a formalism leads in a natural way to the introduction of nonvanishing masses and corresponding thresholds. Two-point and three-point Green’s functions are further discussed.

Riassunto

Si introducono gli operatori di campo caratterizzati dal parametro complesso di dimensionalitàΔ=δ+. Si suppone che gli operatori di campo fisici, che descrivono approssimativamente la teoria quantistica dei campi invariante rispetto alla scala, abbiano una parte realeδ del parametro di dimensionalità definita, e possano essere rappresentati come sovrapposizione degli operatori con valori diversi dalla parte immaginariaβ. Si mostra come questo formalismo conduce naturalmente ad introdurre masse che non si annullano e corrispondenti valori di soglia. Poi si discutono le funzioni di Green di due e tre punti.

Реэюме

Мы вводим опрераторы поля, характериэуемые комплексным параметром многомерностиΔ=δ+. Предполагается, что фиэические полевые операторы, которые приближенно описывают масщтабно-инвариант ную квантовую теорию поля, имеют определенную вешественную частьδ для параметра многомерности и могут быть представлены как суперпоэиция операторов с раэличными эначениями мнимой частиβ. Мы покаэываем, что такой формалиэм естественным обраэом приводит к введению не обрашаюшихся в нуль масс и соответствуюших порогов. Обсуждаются двухточечные и трехточечные функции Грина.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Mack andA. Salam:Ann. of Phys.,53, 174 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Hortacsu, R. Seiler andB. Schroer:Phys. Rev. D,5, 2518 (1972).

    Article  ADS  Google Scholar 

  3. I. Todorov: Schladming lectures, February 1973.

  4. The coefficientc(δ) is, in principle, arbitrary; it can be determined, however, if we require that\(\Delta ^{(?)} (x|\delta ) = \Delta ^{(?)} (x;0)\) whereΔ (?)(x; 0) are the standard Green’s functions for the massless scalar field (see, for example, ref. (5).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. W. Rühl:Comm. Math. Phys.,30, 287 (1973).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. The spectral representation (2) can be defined for the inhomogeneous Green’s function, in particular for the causal propagator, if we considerΔ (?)(x; 2) as corresponding boundary values of the analytic function obtained from (2) by the replacementΔ (?)0 (x; 2) →G 0(z 2; 2) = ( 2/8πi) (H (1)1 (ℵz/ℵz), wherez 2 =z u z u,z u =x u +iy u (see, for example, ref. (7-9)).

  7. G. Källén: inProceedings of the MIT Conference on Mathematical Theory of Elementary Particles, 1965 (Cambridge, Mass., 1966).

  8. J. Lukierski:Journ. Math. Phys.,10, 918 (1969).

    Article  ADS  Google Scholar 

  9. E. Pfaffelhuber:Journ. Math. Phys.,11, 1459 (1971).

    Google Scholar 

  10. D. F. Dell’Antonio:Nuovo Cimento,12 A, 756 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  11. R. A. Brandt andWing-Chiu Ng:Nuovo Cimento,13 A, 1025 (1973).

    Article  ADS  Google Scholar 

  12. S. Ferrara:Phys. Lett.,44 B, 188 (1973).

    Article  ADS  Google Scholar 

  13. H. A. Kastrup:Phys. Lett.,3, 78 (1962).

    Article  ADS  MATH  Google Scholar 

  14. K. Wilson:Phys. Rev.,179, 1499 (1968).

    Article  ADS  Google Scholar 

  15. A. M. Polyakov:Sov. Phys. JETP Lett.,12, 381 (1970).

    ADS  Google Scholar 

  16. A. A. Migdal:Phys. Lett.,37 B, 98, 386 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  17. B. Andersson:Nucl. Phys.,55 B, 195 (1973).

    Article  ADS  Google Scholar 

  18. D. Bhaumik, O. W. Greenberg andR. N. Mohapatra:Phys. Rev. D,6, 2989 (1972).

    Article  ADS  Google Scholar 

  19. D. Bhaumik andO. W. Greenberg:Phys. Rev. D,7, 3136 (1973).

    Article  ADS  Google Scholar 

  20. P. Vinciarelli andP. Weisz:Phys. Rev. D,7, 3091 (1973).

    Article  ADS  Google Scholar 

  21. In the general case, the transformation (10) should be understood in the sense of distribution theory (see, for example, ref. (23)).

  22. A. H. Zemanian:Generalized Integral Transforms (New York, N. Y., 1968).

  23. See, for example,H. E. Moses:Ann. of Phys.,52, 444 (1969).

    Article  ADS  Google Scholar 

  24. See, for example,V. Ottoson:Ark. Fys.,33, 523 (1967).

    MathSciNet  Google Scholar 

  25. S. Ferrara andG. Parisi:Nucl. Phys.,42 B, 281 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukierski, J. Asymptotic logarithmic behaviour and the complex dimensionality parameter. Nuov Cim A 20, 669–677 (1974). https://doi.org/10.1007/BF02727459

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02727459

Navigation