Skip to main content

Exact bound states for the central fraction power singular potential\(V(r) = \alpha r^{2/3} + \beta r^{ - 2/3} + \gamma r^{ - 4/3} \).

Summary

We obtain here a set of exact bound-state solutions, out of infinite exact bound-state solutions, for the central fraction power singular potential\(V(r) = \alpha r^{2/3} + \beta r^{ - 2/3} + \gamma r^{ - 4/3} \) by using a suitable ansatz. The bound-state solutions obtained here are normalizable and for each solution there is an interrelation between the parameters α, β, γ of the potential and the orbital angular-momentum quantum numberl.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    V. Singh, S. N. Biswas andK. Datta:Phys. Rev. D,18, 1901 (1978);Lett. Math. Phys.,3, 73 (1979).

    MathSciNet  ADS  Article  Google Scholar 

  2. [2]

    G. P. Flessas:Phys. Lett. A,83, 121 (1981);J. Phys. A,15, L97 (1982).

    MathSciNet  ADS  Article  Google Scholar 

  3. [3]

    V. S. Varma:J. Phys. A,44, L489 (1981).

    MathSciNet  Article  Google Scholar 

  4. [4]

    S. K. Bose andN. Varma:Phys. Lett. A,141, 141 (1989);147, 85 (1990);S. K. Bose:J. Math. Phys. Sci.,26, 129 (1992);Exact bound states of the relativistic Schrödinger equation for the central potential V(r) = (-α/γ) + (β/γ ½), submitted toNuovo Cimento B.

    ADS  Article  Google Scholar 

  5. [5]

    S. C. Chhajlany andV. N. Malnev:J. Phys. A,23, 3711 (1990);L. A. Singh, S. P. Singh andK. D. Singh:Phys. Lett. A,148, 389 (1990).

    ADS  Article  MATH  Google Scholar 

  6. [6]

    A. de Souza Dutra andH. Boschi Filho:Phys. Rev. A,44, 4721 (1991).

    MathSciNet  ADS  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. K. Bose.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bose, S.K. Exact bound states for the central fraction power singular potential\(V(r) = \alpha r^{2/3} + \beta r^{ - 2/3} + \gamma r^{ - 4/3} \).. Nuov Cim B 109, 1217–1220 (1994). https://doi.org/10.1007/BF02726685

Download citation

PACS

  • 03.65.Ge
  • Solutions of wave equations: bound states