Skip to main content
Log in

Second-order temporal and spatial coherence of thermal electrons

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

Although the second-order coherence properties of a wide variety of optical fields have been investigated, the second-order coherence properties of fermion sources have been largely unexplored. In view of recent experimental proposals for novel extensions to fermionic systems of Hanbury Brown-Twiss-type experiments, it is important to understand better the coherence properties of fermion sources. In this paper a detailed study of the second-order temporal and spatial coherence of thermal electrons is made. Important distinctions between the coherence properties of thermal electrons and black-body radiation are pointed out. These distinctions arise from three principal considerations:a) particle number conservation,b) tensorial character of the basic fields,c) quantum statistics.

Riassunto

Sebbene siano state studiate le proprietà di coerenza di secondo ordine di una grande varietà di campi ottici, le proprietà di coerenza di second’ordine delle sorgenti fermioniche sono state poco esaminate. In vista delle recenti proposte sperimentali per nuove estensioni ai sistemi fermionici degli esperimenti del tipo di Hanbury Brown-Twiss, è importante capire meglio le proprictà di coerenza delle fonti fermioniche. In questo articolo, si fa uno studio dettagliato della coerenza temporale e spaziale di second’ordine degli elettroni termici. Si sottolineano importanti distinzioni tra le proprietà di coerenza degli elettroni termici e la radiazione di un corpo nero. Queste distinzioni sorgono da 3 considerazioni principali:a) conservazione del numero di particelle,b) carattere tensoriale dei campi di base,c) statistica quantistica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example,Neutron Interferometry, edited byU. Bonse andH. Rauch (Clarendon Press, Oxford, 1979), for discussions of classic experiments in both neutron and electron interference.

    Google Scholar 

  2. D. Gabor:Light and information, inProgress in Optics, Vol.1, edited byE. Wolf (North-Holland. Amsterdam, 1961), p. 109.

    Google Scholar 

  3. The nonidentity between light and electron optics is manifested even at the level of first-order correlation phenomena by the Aharonov-Bohm effect, an interference phenomenon produced by the coupling of electric charge to electromagnetic potentials. Photons, therefore, cannot give rise to this effect. SeeY. Aharonov andD. Bohm:Phys. Rev.,115, 485 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  4. M. P. Silverman:Nuovo Cimento D,97, 200 (1987).

    Article  Google Scholar 

  5. R. Hanbury Brown andR. Q. Twiss:Philos. Mag.,45, 663 (1956).

    Article  Google Scholar 

  6. R. Hanbury Brown andR. Q. Twiss:Nature (London),177, 27 (1956).

    Article  ADS  Google Scholar 

  7. M. P. Silverman:Phys. Lett. A,120, 442 (1987).

    Article  ADS  Google Scholar 

  8. M. P. Silverman:Phys. Lett. A,118, 155 (1986).

    Article  ADS  Google Scholar 

  9. M. P. Silverman:Phys. Lett. A, (1987) in press.

  10. S. Boffi andG. Caglioti:Nuovo Cimento B,3, 262 (1971).

    Article  ADS  Google Scholar 

  11. Y. Ohnuki andT. Kashiwa:Prog. Theor. Phys.,60, 548 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Ledinegg andE. Schachinger:Phys. Rev. A,27, 2555 (1983).

    Article  ADS  Google Scholar 

  13. See, for example,R. J. Glauber:Phys. Rev.,131, 2766 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  14. A thermal-neutrino gas is perhaps a better fermionic analogue to black-body radiation, but one hardly conducive to experimental investigation. The neutrino counterpart to the Planck distribution for photons is described inP. J. Walsh andC. F. Gallo:Am. J. Phys.,48, 599 (1980).

    Article  ADS  Google Scholar 

  15. R. C. Bourret:Nuovo Cimento,18, 347 (1960).

    Article  MATH  Google Scholar 

  16. Y. Kano andE. Wolf:Proc. Phys. Soc.,80, 1273 (1962).

    Article  ADS  Google Scholar 

  17. C. L. Mehta andE. Wolf:Phys. Rev. 134, A 1143 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  18. C. L. Mehta andE. Wolf:Phys. Rev. 134, A 1149 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  19. L. D. Landau andE. M. Lifshitz:Statistical Physics (Pergamon Press, London, 1958), p. 157.

    MATH  Google Scholar 

  20. The conversion to an infinite series is affected by setting 1/(exp [x]+1)=1−1/(1+exp [−x]), expanding\(1/(1 + \exp [ - x]) = \sum\limits_{n = 0}^\infty {( - 1)^n x^n } \) and carrying out the integration overx.

  21. A. Erdelyi, Editor:Higher Transcendental Functions (McGraw-Hill, New York, N. Y., 1953), p. 24.

    Google Scholar 

  22. A. Erdelyi, Editor:Higher Transcendental Functions (McGraw-Hill, New York, N. Y., 1953), p. 48.

    Google Scholar 

  23. The Bernoulli numbers are defined by\(z/(\exp [z] - 1) = \sum\limits_{n = 0}^\infty {B_n z^n /n!} \). SeeA. Erdelyi, Editor:Higher Transcendental Functions (McGraw-Hill, New York, N. Y., 1953), p. 35.

    MATH  Google Scholar 

  24. R. Hanbury Brown:The Intensity Interferometer (Taylor and Francis, London, 1974).

    Google Scholar 

  25. Photon bunching is not a general property of photons, since radiation states can be constructed for which photons are uncorrelated or anticorrelated. It was demonstrated if ref. (4). that fermion ensembles characterized by a factorizable density operator (in a momentum-spin projection representation) generally manifest antibunching irrespective of the source coherence. There are, however, fermion ensembles comprised of certain highly correlated multifermion states that can exhibit other types of clustering behaviour, as reported inM. P. Silverman:Effects of potentials on fermion antibunching, Schrödinger Centenary Conference (Imperial College, London, 1987) andTheoretical study of electron antibunching in a field-emission beam, Meeting of the American Physical Society, Arlington Va, (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silverman, M.P. Second-order temporal and spatial coherence of thermal electrons. Nuovo Cim B 99, 227–245 (1987). https://doi.org/10.1007/BF02726584

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02726584

Keywords

Navigation