Skip to main content
Log in

Correspondence principle in general relativity

Принцип соответствия в общей теории относительности

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

In order to solve the negative-energy crisis in canonical quantum gravity, we generalize the correspondence principle, including the gravitational constant in the four-momentum operator. A physically consistent concept of time and, consequently, a wave equation equivalent to the Schrödinger equation are then introduced. Implications of this framework in quantum cosmology and in the predictability problem of quantum gravity are also discussed.

Riassunto

Per risolvere la crisi di energia negativa nella gravità quantistica canonica si generalizza il principio di corrispondenza, includendo la costante gravitazionale nell’operatore quadrimpulso. Sono quindi introdotti un concetto coerente di tempo e, di conseguenza, un’equazione d’onda equivalente all’equazione di Schrödinger. Si discutono anche le implicazioni di questo modello nella cosmologia quantistica e nel problema di prevedibilità della gravità quantistica.

Резюме

Мы обобщаем принцип соответствия, включая гравитационную постоянную в оператор четырех-импульса. Затем вводятся физически согласованная концепция времени и, следовательно, волновое уравнение, эквивалентное уравнению Шредингера. Также обсуждаются применения этого подхода к квантовой космологии и к проблеме предсказуемости для квантовой гравитации.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. DeWitt inDynamical Theory of Groups and Fields, edited byB. S. DeWitt andC. M. DeWitt (Gordon & Breach, New York, N. Y., 1979).

    Google Scholar 

  2. A. Ashtekar andG. T. Horowitz:Phys. Rev. D,26, 3342 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  3. M. J. Gotay:Class Q. Grav.,3, 487 (1986);J. Math. Phys. (N. Y.),27, 2051 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  4. S. W. Haking:Commun. Math. Phys.,87, 395 (1982).

    Article  ADS  Google Scholar 

  5. S. W. Hawking:Phys. Lett. B,195, 337 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Banks:Nucl. Phys. B,249, 332 (1985);J. J. Halliwell: Ph. Thesis, University of Cambridge (1986);R. Brout:On the concept of time and the origin of cosmological temperature, Brussels Preprint (1987).

    Article  ADS  Google Scholar 

  7. A. Komar: inMagic Without Magic: John Archibald Wheeler, A Collection of Essays in Honor of his 60th Birthday, edited byJ. R. Klauder (Freeman, San Francisco, Cal., 1972).

    Google Scholar 

  8. S. W. Hawking:Phys. Rev. D,14, 2460 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  9. P. Hájicek:Phys. Rev. D,31, 785 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  10. P. A. M. Dirac:Lectures in Quantum Mechanics (Academic Press, New York, N. Y., 1965).

    Google Scholar 

  11. S. Hawking:Quantum Cosmology, in300 Years of Gravity (to be published by the Cambridge University Press).

  12. B. S. DeWitt andN. Graham (editors):The Many-Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, N. J., 1973).

    Google Scholar 

  13. J. B. Hartle: inGravitation and Astrophysics, 1986 Cargese NATO Advanced Summer Institute;J. J. Halliwell:Correlations in the Wave Function of the Universe (DAMPT Preprint, Cambridge, 1987);S. Wada:Interpretation and Predictivity of Quantum Mechanics and Quantum Cosmology (DAMPT Preprint, Cambridge, 1987).

  14. J. B. Hartle:Quantum Kinetics of Spacetime, Vol. 3:General Relativity, in preparation.

  15. M. A. Markov:Pis’ma Ž. Ėksp. Teor. Fiz.,45, 61 (1987).

    ADS  Google Scholar 

  16. See, for example,J. A. Wheeler:Geometrodynamics (Academic Press, New York, N. Y., 1962);C. M. Patton andJ. A. Wheeler: inQuantum Gravity, Vol. 1:An Oxford Symposium, edited byC. J. Isham, R. Penrose andD. W. Sciama (Clarendon Press, Oxford, 1975);C. D. Mead.Phys. Rev. B 135, 849 (1964);143, 990 (1966);H. H. Borzeskowski andH. J. Treder:Ann. Phys. (Leipzig),40, 287 (1983);P. F. González-Díaz:Phys. Rev. D,27, 3042 (1983);T. Padmanabham:Ann. Phys. (N. Y.),165, 38 (1985);P. S. Joshi, T. Padmanabham andS. M. Chitre:Phys. Lett. A,120, 115 (1987).

    MATH  Google Scholar 

  17. P. F. González-Díaz:Lett. Nuovo Cimento,41, 481 (1984);A. Jannussis:Nuovo Cimento B,90, 58 (1985).

    Article  Google Scholar 

  18. P. F. González-Díaz: to be published.

  19. J. A. Wheeler:Battelle Rencontres 1967, Lectures in Mathematics and Physics, edited byC. M. DeWitt andJ. A. Wheeler (Benjamin, New York, N.Y., 1968);B. S. DeWitt:Phys. Rev.,160, 1113 (1967).

    Google Scholar 

  20. R. P. Feynman andA. R. Hibbs:Quantum Mechanics and Path Integrals (MacGraw-Hill, New York, N.Y., 1965).

    MATH  Google Scholar 

  21. A. Peres:Nuovo Cimento,26, 53 (1962).

    Article  MATH  Google Scholar 

  22. B. S. DeWitt: inRelativity. Proceedings of Relativity Conference in Midwest, edited byM. Carmell, S. I. Fickler andL. Witten (Plenum, New York, N.Y., 1970).

    Google Scholar 

  23. A. Einstein, E. Schrödinger, M. Planck andH. A. Lorentz:Letters on Wave Mechanics, edited byK. Przibram, (Vision Press, London, 1967).

    Google Scholar 

  24. A. Pais:Subtle is the Lord … (Oxford University Press, Oxford, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Díaz, P.F. Correspondence principle in general relativity. Nuov Cim B 102, 195–207 (1988). https://doi.org/10.1007/BF02726567

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02726567

PACS

PACS

Navigation