Skip to main content
Log in

A heuristic particle-geometry principle

Эвристический принцип, связывающий частицу с геометрией пространства-времени

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The introduction of a resolution limit of the order of the Planck length in the definition of covariant derivative leads to the formulation of the following principle: every particle is associated to a characteristic curved space-time whose Riemann affine connection is proportional to the four-momentum of the particle according to the following relation:p l = 2ℏξ i il .

Riassunto

L’introduzione di un limite di risoluzione dell’ordine della lunghezza di Planck nella definizione di una derivata covariante porta alla formulazione del seguente principio: ogni particella è associata al caratteristico spazio-tempo curvo la cui connessione affine di Riemann è proporzionale al 4-impulso della particella secondo la seguente relazione:p l = 2ℏξ i il .

Резюме

Введение предела разрешения порядка длины Планка при определении ковариантной производной приводит к формулировке следующего принципа: каждая частица связана с характеристическим искривленным пространством-временем, для которого риманове аффинная связь пропорциональна четырех-импульсу частицы, в соответствии с соотношением:p l = 2ℏξ i il .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Isham: inQuantum Gravity, Vol.2:A Second Oxford Symposium, edited byC. J. Isham, R. Penrose andD. W. Sciama (Clarendon Press, Oxford, 1981).

    Google Scholar 

  2. J. A. Wheeler:Geometrodynamics (Academic Press, New York, N. Y., 1962).

    MATH  Google Scholar 

  3. C. M. Patton andJ. A. Wheeler: inQuantum Gravity, Vol.1:An Oxford Symposium, edited byC. J. Isham, R. Penrose andD. W. Sciama (Clarendon Press, Oxford, 1975).

    Google Scholar 

  4. S. W. Hawking:Nucl. Phys. B,144, 349 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  5. C. D. Mead:Phys. Rev.,135, B849 (1964);143, 990 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Padmanabham:Ann. Phys. (N. Y.),165, 38 (1985).

    Article  ADS  Google Scholar 

  7. H.-H. Borzeszkowski andH.-J. Treder:Ann. Phys. (Leipzig),40, 287 (1983).

    Article  ADS  Google Scholar 

  8. P. F. González-Díaz:Lett. Nuovo Cimento,41, 481 (1984).

    Article  Google Scholar 

  9. H. Weyl:Ann. Phys. (Leipzig),59, 101 (1919).

    Article  ADS  Google Scholar 

  10. H. Weyl:Z. Phys.,56, 330 (1929).

    Article  ADS  MATH  Google Scholar 

  11. T.-P. Cheng andL.-F. Li:Gauge Theory of Elementary Particle Physics (Oxford University Press, New York, N. Y., 1984).

    Google Scholar 

  12. C. N. Yang: inGauge Interactions. Theory and Experiment, edited byA. Zichichi, (Plenum Press, New York, N. Y., and London, 1984).

    Google Scholar 

  13. L. D. Faddeev andA. A. Slavnov:Gauge Fields. Introduction to Quantum Theory (Benjamin, Reading, Mass., 1980).

    MATH  Google Scholar 

  14. A. Jannussis:Nuovo Cimento B,90, 58 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Díaz, P.F. A heuristic particle-geometry principle. Nuov Cim B 102, 115–121 (1988). https://doi.org/10.1007/BF02726560

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02726560

PACS

PACS

PACS

Navigation