Skip to main content
Log in

Hint for a deduction of the first principle of thermodynamics from microphysics

Указания для вывода первого начала термодинамики из микрофизики

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The deduction of the first law of thermodynamics from microphysics involves five main problems of long standing:a) the presence of long-range interactions,b) the nontensor character of the gravitational stress-energy density in the curved space-time,c) the integration of the components of tensors or of a complex (like the gravitational stress-energy density) in a curved space,d) the relativistic formulation of thermodynamics,e) the self-energy of particles. We only face problemsa), b) andc) by a field-theoretical approach to gravitation starting from the ideal, «unrenormalized», flat space-time where the stress-energy density turns out to be a tensor. The energy balance is expressed in terms of electromagnetic (e.m.) and gravitational fields, of stresses due to short-range fields (nuclear fields and Poincaré stresses) and of bare-mass densities, which avoid radiation reaction problems and the double computation of the energies associated with the long-range fields (which contribute to real-mass densities). Finally, we express the above quantities in the usual terms of rest-plus-kinetic energies ofparticles andmacroscopic-field energies. However, in this usual form, the first principle of thermodynamics is valid when i) the energies due to the velocity fields of the long-range interactions of the particles of the system considered practically vanish outside the closed boundary surface, and when ii) such «microscopic» energies are much larger than the «macroscopic» energies in the practical region of influence of any particle.

Riassunto

La deduzione della prima legge della termodinamica dalla microfisica coinvolge cinque problemi principali:a) la presenza di interazioni a lungo raggio di azione,b) il carattere non tensoriale della densità di sforzi-energia gravitazionali nello spazio-tempo curvo,c) l’integrazione delle componenti di tensori o di un complesso (come la densità di sforzi ed energia gravitazionali) in uno spazio curvo,d) la formulazione relativistica della termodinamica,e) l’autoenergia delle particelle. Si affrontano solo i problemia), b) ec) con un approccio di teoria di campo alla gravitazione, partendo da uno spazio-tempo ideale e non rinormalizzato, dove la densità di sforzi ed energia risulta essere un tensore. Il bilancio energetico è espresso in termini di campi elettromagnetici (e.m.) e gravitazionali, di sforzi dovuti a campi a corto raggio di azione (campi nucleari e forze di Poincaré) e di densità di masse nude, che evitano problemi di reazione di radiazione e la doppia valutazione delle energie associate ai campi a lungo raggio di azione (che contribuiscono alla densità di massa reale). Infine, si esprimono le grandezze di cui sopra nei termini usuali di energie di riposo e cinetiche delleparticelle e di energie dei campimacroscopici. Tuttavia, in questa forma usuale, il primo principio della termodinamica è valido quando i) le energie dovute ai campi di velocità delle interazioni a lungo raggio di azione delle particelle del sistema considerato praticamente svaniscono all’esterno della superficie chiusa delimitante il sistema e quando ii) tali energie «microscopiche» sono molto più grandi delle energie «macroscopiche» nella regione dove praticamente influisce ciascuna particella.

Резюме

Вывод первого начала термодинамики из микрофизики включает пять основных проблем: 1) наличие длиннодействующих взаимодействий; 2) нетензорный характер гравитационной плотности натяжений-энергии в искривленном пространстве-времени; 3) интегрирование компонент тензоров или комплекса (подобного гравитационной плотности натяжений-энергии) в искривленном пространстве; 4) релятивистская формулировка термодинамики; 5) собственная энергия частиц. Мы рассматриваем только проблемы 1), 2), и 3), используя подход теории поля к гравитации и исходя из идеального, «неперенормируемого» плоского пространства-времени, где плотность натяжений-энергии оказывается тензором. Баланс энергии выражается через электромагнитное и гравитационное поля, натяжения, обусловленные короткодействующими полями (ядерные поля и натяжения Пуанкаре), и плотности затравочных масс, при этом не возникают проблемы реакции излучения и двойное вычисление энергий, связанных с длиннодействующими полями (которые дают вклад в плотности реальных масс). Затем мы выражаем вышеуказанные величины через обычные энергии покоя плюс кинетическую дляцасмиц и энергиимакроскопицеских полей. Однако, в обычной форме первое начало термодинамики справедливо, когда: 1) энергии, обусловленные полями длиннодействующих взаимодействий частиц рассмотренной системы, практически исчезают вне замкнутой граничной поверхности, и 2) такие «микроскопические» энергии много больше, чем «макроскопические» энергии в практической области действия любой частицы.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Carathéodory:Math. Ann.,67, 355 (1909);Sitzber. Preuss. Akad. Wiss., p. 39 (1925).

    Article  MathSciNet  Google Scholar 

  2. R. H. Fowler andE. A. Guggenheim:Statistical Thermodynamics (New York, N. Y., 1939);E. A. Guggenheim:Thermodynamics (Amsterdam, 1949);E. B. Callen:Thermodynamics (New York, N. Y., 1960);M. Tribus:Thermostatics and Thermodynamics (Princeton, N. J., 1961);P. T. Landsberg:Rev. Mod. Phys.,28, 363 (1956);P. T. Landsberg:Thermodynamics (New York, N. Y., 1961);R. Kubo:Thermodynamics, II ed. (Amsterdam, 1968);M. Dutta:Ind. Journ. Phys.,42, 760 (1968).

  3. If physical connections among these fields will be discovered, the number of axioms necessary to build up physics will further be reduced.

  4. S. R. de Groot, P. Mazur andH. A. Tohoek:Physica,19, 549 (1953);P. Mazur andI. Prigogine:Mem. Acad. Roy. Blg. (Cl. Sci.),23, 1 (1953).

    Article  ADS  MATH  Google Scholar 

  5. S. R. de Groot andP. Mazur:Nonequilibrium Thermodynamics (Amsterdam, 1962).

  6. G. Polvani:Termodinamica (Milano, 1953).

  7. S. R. de Groot andP. Mazur:Nonequilibrium Thermodynamics, Chap. II, sect.2 and3 (Amsterdam, 1962).

  8. S. R. de Groot andP. Mazur:Nonequilibrium Thermodynamics, Chap. XIII, sect.d (Amsterdam, 1962).

  9. See, for example,P. A. M. Dirac:The Principles of Quantum Mechanics, III ed., sect.28 (Oxford, 1947), p. 114;L. I. Schiff:Quantum Mechanics, Chap. II, sect.6.

  10. L. D. Landau andE. M. Lifshitz:Quantum Mechanics, sect.10 (London, 1958).

  11. H. Goldstein:Classical Mechanics (Reading, Mass., 1953).

  12. See, for example,W. K. H. Panofsky andM. Phillips:Classical Electricity and Magnetism, subsect.23 .2,23 .3 (London, 1962).

  13. See, for example,R. Hakim:Journ. Math. Phys.,8, 1315 (1967), where an extensive bibliografy on this subject is given.

    Article  ADS  Google Scholar 

  14. See, for example,C. Møller:The Theory of Relativity, Chap. XI, sect.126 and127 (Oxford, 1969). See alsoA. Trautman inL. Witten:Gravitation: an Introduction to Current Research (New York, 1962).

  15. W. Thirring:Ann. of Phys.,16, 96 (1961). See alsoR. U. Sexl:Fortschr. Phys.,15, 269 (1967).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S. Deser:Gen. Rel. Grav.,1, 9 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Cavalleri andG. Spinelli:Phys. Rev. D,12, 2203 (1975). In this paper we have also shown that this occurs if the rest masses are independent of the gravitational potential. Otherwise we have a different theory: seeG. Cavalleri andG. Spinelli:Nuovo Cimento,39 B, 93 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  18. We denote byz α the co-ordinates of the matter element and byx α the co-ordinates of the general point of the space-time. The four-velocityż α of a matter element is related to its ordinary velocityv byż α = (1 —ν 2/c 2)−½να =γν α, wherev α=(v,c).

  19. From a purely classical point of view or in some recent revivals of classical ideas applied to elementary particles (see, for instance,S. Iida:Journ. Phys. Soc. Japan,37, 1183 (1974) andK. S. Yadava:Nuovo Cimento,32 B, 273 (1976)), one could define Δm bare as the proper mass obtainable by disgregating all the matter and distancing to infinity the dust so obtained. From the point of view of quantum electrodynamics, Δm bare is the sum of the masses of the «bare» elementary particles contained in ΔV.

    Article  ADS  Google Scholar 

  20. Equation (8) can be obtained by collecting the results of eqs. (13) ofG. Cavalleri andG. Spinelli:Phys. Rev. D,12, 2200 (1975), and eqs. (19) ofG. Spinelli: to be published. However, in these references we have putc=1, differently from the present paper.

    Article  MathSciNet  ADS  Google Scholar 

  21. Apparently, (7) and (8) seem to be first-order expressions inf. However, if we solve the field equations forψ αβ , which are (see eq. (1) of ref. (17)) □ψ αβ ψ λ(α:β) λ +ψ :αβ +η αβ (ψ λσ :λσ − □ψ) =ƒT αβ withT αβ given by (7), we find thatψ αβ is of first order inf. Consequently, (7) and (8) are second-order expansions inf.

  22. G. Cavalleri andG. Spinelli:Lett. Nuovo Cimento,9, 325 (1974).

    Article  MathSciNet  Google Scholar 

  23. The radiusR has nothing to do with the radii of the particles, which can be point-like. It is sufficient thatR be larger than the radius (if any) of the particle considered.

  24. As often used, we denote by radiation (or acceleration) fields the components of the fields which are proportional to the accelerationa. Such fields, for a spherically symmetric system, are, outside the system, inversely proportional to the distancer from the centre of the system. On the contrary, we denote by velocity fields the components of the fields which are independent ofa and only depend on the velocityv and the distancer (the dependence on the latter isr −2). For example, for a pointlike chargeq, the velocity field is (see, for instance, sect.11 ofBecker in ref. (25))E ν =qr −3(l -ν ·r/rc)−3 (l -ν 2/c 2)(r -ν r/c). The acceleration (or radiation) field isE a =qr −3(l -ν ·r/rc)−3 [a x (r -ν r/c)]x r/c 3.

  25. Since in the rest systemT rest p0 =0, we haveT rest,q pq =0 withp,q=1,2,3 as a consequence ofT pα =0 with α=0,1,2,3. Then\(0 = \int\limits_{V_\infty } {dV T_{pq} ^{,q} x_r = \int\limits_{V_\infty } {dV[(T_{pq} x_r )^{,q} ---T_{pq} S_r^q ]} } \). The volume integral of the divergence transforms into a surface integral. IfT pq=0 onS we get\(\int\limits_{V_\infty } {dV T_{pr} = 0} \).

  26. Letv be the velocity of an inertial reference systemS with respect to another inertial observerS′, andu andu′ the velocities of a particle relative toS andS′, respectively. Special relativity givesγ u = [1 - (u′/c)2]½ =γ u γ ν (1 +u ·ν/c 2). The proof of this formula, whenv, u andu′ are parallel, is given, for example, inJ. G. Taylor:Special Relativity, subsect.4 \s.4, eq. (4.28) (Oxford, 1975). The formula can be obtained in the general case by the use of eq. (55), sect.21, ofC. Møller:The Theory of Relativity (Oxford, 1960). The above formula is used in our eq. (18) by the substitutionsvv (p) B ,νν rel (s) ,u′→v (s) .

  27. Notice that the subdivisions of particles in subgroups is arbitrary only from a microscopical point of view, since ΔV (p)) is large from a microscopical point of view. But there is no arbitrariness in the division between kinetic and thermal energy, since ΔV (p) is small from a macroscopic point of view. Indeed, it is sufficient that the velocitiesv (s) of the centres of mass of the portion of matter obtained by a further subdivision of ΔV (p) differ from each other by quantities |Δv (s)| small compared tov (s) themselves. For example, in a rotating vessel, all energy cannot be considered as thermal energy since, if we take its entire volume as ΔV (p) , we have that Δv (s) are not small compared tov (s) (which is even zero in this case). We re-emphasize that, if ΔV (p) is small from the macroscopic point of view, there is no arbitrariness at all.

  28. G. Cavalleri andG. Salgarelli:Nuovo Cimento,62 A, 722 (1969).

    Article  ADS  Google Scholar 

  29. I. Paiva-Veretennicoff:Physica,75, 194 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  30. See, for example,H. Callen andG. Horwitz:Amer. Journ. Phys.,39, 938 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalleri, G., Spinelli, G. Hint for a deduction of the first principle of thermodynamics from microphysics. Nuov Cim B 41, 13–28 (1977). https://doi.org/10.1007/BF02726542

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02726542

Navigation