Geomagnetic activity and enhanced mortality in rats with acute (epileptic) limbic lability

Abstract

Presumably unrelated behaviors (e.g. psychiatric admissions, seizures, heart failures) have been correlated with increased global geomagnetic activity. We have suggested that all of these behaviors share a common source of variance. They are evoked by transient, dopamine-mediated paroxysmal electrical patterns that are generated within the amygdala and the hippocampus of the temporal lobes. Both the probability and the propagation of these discharges to distal brain regions are facilitated when nocturnal melatonin levels are suppressed by increased geomagnetic activity. In support of this hypothesis, the present study demonstrated a significant correlation of Pearsonr=0.60 between mortality during the critical 4-day period that followed induction of libic seizures in rats and the ambient geomagnetic activity during the 3 to 4 days that preceded death; the risk increased when the 24 h geomagnetic indices exceeded 20 nT for more than 1 to 2 days.

This is a preview of subscription content, access via your institution.

References

  1. Ahtee L, Vahala M-L (1985) Taurine and its derivatives alter brain dopamine metabolism similarly to GABA in mice and rats. Prog Clin Biol Res 179:331–334.

    CAS  Google Scholar 

  2. Anton-Tay F (1971) Pineal-brain relationships. In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill Livingston. London, pp 213–227.

    Google Scholar 

  3. Bardsano JL, Cos S, Picazo ML (1989) Veränderungen der Anzahl synaptischer Bänder in der Pinealdrüse der Ratte an geomagnetischen Ruhetagen und Gewittertagen. J Hirnforsch 30:639–643

    Google Scholar 

  4. Baron P, Palma V, DeBartolomies A, Tedeschi E, Muscettola G, Campanella G (1991) Dopamine D1 and D2 receptors mediate opposite functions in seizures induced by lithium-pilocarpine. Eur J Pharmacol 195:157–162.

    Article  Google Scholar 

  5. Bureau YRJ, Persinger MA (1991) Transient blocking of persistent gnawing by haloperidol in rats with seizure-induced damage in the substantia nigra reticulata. Submitted to Psychopharmacology.

  6. Carpenter MC, Sutton J (1983) Human neuroanatomy, 8th edn. Williams and Wilkins, Baltimore.

    Google Scholar 

  7. Dakshinamurti K, Paulose CS, Viswanathan M, Siow AY (1988) Neuroendocrinology of pyridoxine deficiency. Neurosci Biobehav Rev 12:189–193.

    CAS  Article  Google Scholar 

  8. De Olmos J, Alheid GF, Beltramino CA (1985) Amygdala. In: Paxinos G (ed) The rat nervous system. Academic Press, New York. pp 223–317.

    Google Scholar 

  9. Foley PB, Cairncross KD, Foldes A (1986) Pineal indoles: significance and measurement. Neurosci Biobehav Rev 10:273–293.

    CAS  Article  Google Scholar 

  10. Friedman H, Becker RO, Bachman CH (1963) Geomagnetic parameters and psychiatric hospital admissions. Nature 200:626–628.

    CAS  Article  Google Scholar 

  11. Gloor P, Olivier A, Wuesney LF, Andermann F, Horowitz S (1982) The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Ann Neurol 12:129–144.

    CAS  Article  Google Scholar 

  12. Honchar MP, Olney JW, Sherman WR (1983) Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 220:323–325.

    CAS  Article  Google Scholar 

  13. Kavaliers M, Ossenkopp KP (1988) Day-night rhythms of opioid and non-opioid stress-induced analgesia: differential inhibitory effects of exposure to magnetic fields. Pain 32:223–229.

    CAS  Article  Google Scholar 

  14. Keshavan MS, Gangadhar BN, Guatam RU, Ajit VB, Kapur RL (1981) Convulsive threshold in humans and rats and magnetic changes: observations during total solar eclipse. Neurosci Lett 22:205–208.

    CAS  Article  Google Scholar 

  15. Lerchl A, Reiter RJ, Howes KA, Nonaka KO, Stokkan KA (1991) Evidence that extremely low frequency Ca++-cyclotron resonance depresses pineal melatonin synthesis in vitro. Neurosci Lett 124:213–215

    CAS  Article  Google Scholar 

  16. Mayaud PN (1973) A hundred-year series of geomagnetic data 1868–1967. IAGA Bull.

  17. McDonald RMP (1991) Course of recovery from seizure-induced brain trauma in rats. Unpublished fourth year thesis; Laurentian University.

  18. McIntyre DC, Plant JR (1989) Pyriform cortex involvement in kindling. Neurosci Biobehav Rev 13:277–280.

    CAS  Article  Google Scholar 

  19. Novikova KF, Gnevyshev MN, Tokareva NV, Ol Ai, Panov TN (1968) The effect of solar activity on the development of myocardial infarction and mortality resulting therefrom. Cardiology 4:109–112.

    Google Scholar 

  20. Olcese J, Reuss S (1986) Magnetic field effects on pineal gland melatonin synthesis: comparative studies on albino and pigmented rats. Brain Res 369:365–368.

    CAS  Article  Google Scholar 

  21. Oppenheimer SM, Wilson JX, guirarudon C, Cechetto DF (1991) Insular cortex stimulation produces lethal cardiac arrhythmias: a mechanism of sudden death? Brain Res 550:115–121

    CAS  Article  Google Scholar 

  22. Ormandy GC, Jope RS, Snead OC (1989) Anticonvulsant actions of MK801 on the lithium-pilocarpine model of status epilepticus in rats. Exp Neurol 106:172–180

    CAS  Article  Google Scholar 

  23. Ossenkopp KP, Kavaliers M, Prato FS, Hirst M (1983) Reduced nocturnal morphine analgesia in mice following a geomagnetic disturbance. Neurosci Lett 90:321–325.

    Article  Google Scholar 

  24. Persinger MA (1980) The weather matrix and human behavior. Praeger, New York.

    Google Scholar 

  25. Persinger MA (1983) The effects of transient or intense geomagnetic or related global perturbations upon human group behavior. In: Calhoun JB (ed) Environment and population: problems of adaptation. Praeger, New York, pp 28–30

    Google Scholar 

  26. Persinger MA (1988) Increased geomagnetic activity and the occurrence of bereavement hallucinations: evidence for melatonin-mediated microseizuring in the temporal lobe?. Neurosci Lett 88:271–274.

    CAS  Article  Google Scholar 

  27. Persinger MA (1991) Canonical correlation of a temporal lobe signs scale with schizoid and hypomania scales in a normal population. Men and women are similar but for different reasons. Percep Mot Skil 73:615–618.

    CAS  Article  Google Scholar 

  28. Persinger MA, Makarec K (1987) Temporal lobe epileptic signs and correlative behaviors displayed by normal populations. J Gen Psychol 114:179–195

    CAS  Article  Google Scholar 

  29. Persinger MA, Ludwig HW, Ossenkopp KP (1973) Psychophysiological effects of extremely low frequency electromagnetic fields: a review. Percept Mot Skills 36:131–159.

    Article  Google Scholar 

  30. Persinger MA, Makarec K, Bradley JC (1988) Characteristics of limbic seizures evoked by peripheral injections of lithium and pilocarpine. Physiol Behav 44:27–37.

    CAS  Article  Google Scholar 

  31. Persinger MA, Bureau Y, Kostakos M, Peredery O (1992a) Behaviors of rats with insidious brain damage induced by seizures following single peripheral injections of lithium and pilocarpine. Physiol Behav (in press)

  32. Persinger MA, Koren SA, Makarec K, Richards P, Youlton S (1992b) Differential effects of wave form and the subject’s possible temporal lobe signs upon experiences during cerebral exposure to weak intensity magnetic fields. J Bioelectr (in press)

  33. Rajaram M, Mitra S (1981) Correlations between convulsive seizure and geomagnetic activity. Neurosci Lett 24:187–191

    CAS  Article  Google Scholar 

  34. Randall W, Randall S (1991) The solar wind and hallucinations — a possible relation to magnetic disturbances. Bioelectromagnetics 12:67–70

    CAS  Article  Google Scholar 

  35. Roberts GW, Bruton CJ (1990) Notes from the graveyard: neuropathology and schizophrenia. Neuropath Appl Neurobiol 16:3–16

    CAS  Article  Google Scholar 

  36. Roberts RJ, Varney NR, Hulbert JR, Paulsen JS, Richardson ED, Springer JA, Shepard JS, Swan CM, Legrand JA, Harvey JH, Struchen MA (1990) The neuropathology of everyday life: the frequency of partial seizure symptoms among normals. Neuropsychology 4:65–85

    Article  Google Scholar 

  37. Rockhold RW, Acuff CG, Clower BR (1990) Excitotoxic lesions of the paraventricular hypothalamus: metabolic and cardiac effects. Neuropharmacology 29:663–673

    CAS  Article  Google Scholar 

  38. Rosenstein RE, Estevez A, Cardinali DP (1989) Time-dependent effect of melatonin on glutamic acid decarboxylase activity and 36Cl-influx in rat hypothalamus. J Neuroendocrinol 1:443–447

    CAS  Article  Google Scholar 

  39. Ruttan LA, Persinger MA, Koren S (1990) Enhancement of temporal lobe-related experiences during brief exposures to milligauss intensity extremely low frequency magnetic fields. J Bioelectr 9:33–54

    Google Scholar 

  40. Seidman LJ (1983) Schizophrenia and brain dysfunction: an integration of recent neurodiagnostic findings. Psychol Bull 94:195–238

    CAS  Article  Google Scholar 

  41. Semm P (1988) The magnetic detection system of the pigeon: involvement of pineal and retinal photoreceptors and the vestibular system. In: Connor ME, Lovely RH (eds) Electromagnetic fields and neurobehavioral function. Liss, New York, pp 47–61

    Google Scholar 

  42. Spencer SE, Sawyer WB, Loewy AD (1989) Cardiovascular effects produced byl-glutamate stimulation of the lateral hypothalamic area. Am J Physiol 257:H540-H552

    CAS  Google Scholar 

  43. Stevens JR (1982) Sleep is for seizures: a new interpretation of the role of phasic events in sleep and wakefulness. In: Sterman MB, Shouse MN, Passoaunt P (eds) Sleep and epilepsy. Academic Press, New York, pp 249–264

    Google Scholar 

  44. Subrahmanyam S, Sanker Narayan PV, Srinivasan TM (1985) Effect of magnetic micropulsations on biological symptoms — a bioenvironmental study. Int J Biometerol 29:293–305.

    CAS  Article  Google Scholar 

  45. Swerdlow NR, Koob GF (1987) Dopamine, schizophrenia, mania and depression; toward a unified hypothesis of cortico-striatopallido-thalamic function. Behav Brain Sci 10:197–245

    Article  Google Scholar 

  46. Traute V, Duell B (1935) Correlation between geomagnetic storms and death rate. Dtsch Wochensch (January):95

    Google Scholar 

  47. Vanecek J, Pavlik A, Illnerova H (1989) Hypothalamic melatonin receptor sites revealed by autoradiography. Brain Res 435:359–362.

    Article  Google Scholar 

  48. Walton NY, Gunawan S, Trieman DM (1990) Brain amino acid concentration changes during status epilepticus induced by lithium and pilocarpine. Exp Neurol 108:61–71.

    CAS  Article  Google Scholar 

  49. Wilson BW, Wright CW, Morris JE, Buschbom RL, Brown DP, Miller DL, Sommers-Flanningan R, Anderson LE (1990) Evidence of an effect of ELF electromagnetic fields on human pineal gland function. J Pineal Res 9:259–269

    CAS  Article  Google Scholar 

  50. Welker HA, Semm P, Willing RP, Commentz JC, Wiltscho W, Vollrath L (1983) Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Exp Brain Res 50:426–432

    CAS  Google Scholar 

  51. Zeise ML, Semm P (1985) Melatonin lowers excitability of guinea pig hippocampus neurons in vitro. J Comp Physiol A 157:23–29.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yves R. J. Bureau or M. A. Persinger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bureau, Y.R.J., Persinger, M.A. Geomagnetic activity and enhanced mortality in rats with acute (epileptic) limbic lability. Int J Biometeorol 36, 226–232 (1992). https://doi.org/10.1007/BF02726403

Download citation

Key words

  • Geomagnetic activity
  • Death
  • Rat
  • Limbic
  • Epilepsy