Evidence for the Earth gravitational shift by direct atomic-time-scale comparison

Подтверждение земного гравитационного сдвига с помощью прямого сравнения масштабов атомных времен


On the basis of the height difference between the CNR cosmic-ray laboratory at Plateau Rosa, 3500 m, and Turin, 250 m above s.l., a direct measurement of the terrestrial gravitational shift has been made by the comparison of the time scales of two cesium beam atomic frequency standards of the Istituto Elettrotecnico Nazionale «Galileo Ferraris». The principle of equivalence predicts the effect Δt/t=−ΔU/c 2=3.54·10−13, corresponding to the gain of the standard at mountain altitudes Δt/t=30.6 ns/d. The results Δt/t=(33.8±6.8) ns/d and Δt/t=(36.5±5.8) ns/d, derived with two independent operating criteria, have been obtained from 1584 h of actual measurement, with reference to an atomic time scale whose linearity was continuously and carefully tested. The results are discussed in terms of the current gravitational theories and in view of future experimental researches, which will be permitted by the advancements of the metrology of time.


Operando sul dislivello fra il laboratorio di fisica cosmica del CNR di Plateau Rosa, 3500 m, e Torino, 250 m s.m., si è ottenuta la misurazione diretta dello spostamento gravitazionale terrestre dal confronto delle scale temporali di due campioni atomici di frequenza al cesio dell'Istituto Elettrotecnico Nazionale «Galileo Ferraris». Il principio di equivalenza prevede l'effetto Δt/t=−ΔU/c 2=3.54·10−13, corrispondente all'anticipo Δt/t=30.6 ns/d del campione in quota. Da 1584 h di misura effettiva e con due metodi operativi indipendenti sono stati ottenuti i risultati Δt/t=(33.8±6.8) ns/d e Δt/t=(36.5±5.8) ns/d, con riferimento a una scala di tempo atomico continuamente controllata. Si discutono i risultati nel contesto delle attuali teorie della gravitazione e in vista di futuri avanzamenti della metrologia del tempo.


На основе высотной разности между лабораториями космических лучей Национального Центра Исследований на Плато Роза, 3500 м, и в Турине, 250 м над уровнем моря, было проведено прямое измерение земного гравитационного сдвига, посредством сравнения временных шкал двух стандартов частот атомов цезия Национального Института Электроники «Галилео Феррарис». Принцип эквивалентности предсказывает величину Δt/t=−ΔU/c 2=3.54·10−13, соответствующую приращению стандарта на высотах Δt/t=30.6 ns/d. С помощью двух независимых критериев в течение 1584 ч измерений получены следующие результаты Δt/t=(33.8±6.8) ns/d и Δt/t=(36.5±5.8) ns/d. Полученные результаты обсуждаются в терминах существующих гравитационных теорий и в связи с будущими экспериментальными поисками, которые будут способствовать прогрессу метрологии времени.

This is a preview of subscription content, access via your institution.


  1. (1)

    L. Briatore andS. Leschiutta:Lett. Nuovo Cimento,15, 203 (1976), and a letter in press.

    ADS  Article  Google Scholar 

  2. (2)

    G. Rovera:Alta Frequenza,41, 822 (1972).

    Google Scholar 

  3. (3)

    J. Tolman, V. Ptaček, A. Souček andR. Stecher:IEEE Trans., IM19, 247 (1967).

    Google Scholar 

  4. (4)

    A. Raccin:Alta Frequenza,39, 741 (1970).

    Google Scholar 

  5. (5)

    J. E. Lavery:Proc. PTTI,4, 168 (1972).

    Google Scholar 

  6. (6)

    H. Hellwig:Metrologia,6, 118 (1970).

    ADS  Article  Google Scholar 

  7. (7)

    A. Einstein:Jahrb. Radioakt. u. Elektronik,4, 441 (1907);Ann. d. Phys.,35, 898 (1911);S. B. Preuss. Akad. Wiss., 831 (1915);Ann. Phys. Lpz.,49, 760 (1916).

    Google Scholar 

  8. (8)

    J. Lense andH. Thirring:Phys. Zeits.,19, 156 (1918);G. M. Clemence:Rev. Mod. Phys.,19, 361 (1947);Astron. Papers,13-5, 367 (1964);J. J. Gilvary:Publ. Astron. Soc. Pacific,65, 173 (1953);Phys. Rev.,89, 1046 (1953);Nature,183, 666 (1959);L. La Paz:Publ. Astron. Soc. Pacific,66, 13 (1954);M. F. Subbotin:Astron. Žurn.,33, 251 (1956);V. L. Ginzburg:Žurn. Ėksp. Teor. Fiz.,30, 213 (1956);Usp. Fiz. Nauk,59, 11 (1956);63, 119 (1957);Fortschr. Phys.,5, 16 (1957);W. A. Brumberg:Bull. Inst. Teor. Astr.,6–10, 733 (1958);N. S. Kalitzin:Nuovo Cimento,9, 365 (1958).

    MATH  Google Scholar 

  9. (9)

    J. Soldner:Ann. Phys. Lpz.,65, 593 (1921);S. I. Vavilov:Experimental Bases of the Theory of Relativity (Moscow, 1928);G. Van Biesbroeck:Astron. Journ.,55, 49 (1950);58, 57 (1953);P. P. Parenago: inStellar Astronomy (Moscow, 1954);A. A. Mihailov:Astron. Žurn.,33, 912 (1956);G. W. Skrotzky:Dokl. Akad. Nauk,114, 73 (1957);H. V. Klauber:Vistas in Astronomy,3, 147 (1960).

    ADS  Article  MATH  Google Scholar 

  10. (10)

    A. Perot:Compt. Rend.,171, 229 (1920);L. Grebe:Phys. Zeits,21, 662 (1920);Zeits. Phys.,4, 105 (1921);C. E. St. John:Astrophys. Journ.,67, 93 (1928);E. Freundlich:Phys. Zeits.,16, 115 (1915);20, 561 (1919);H. von Seeliger:Astr. Nachr.,202, 83 (1916);J. W. Brault:Thesis (Princeton University, N. J., 1962; unpublished);J. E. Blamont andF. Roddier:Phys. Rev. Lett.,7, 437 (1961);F. Roddier:Ann. Astrophys.,28, 463 (1965);J. L. Snider:Phys. Rev. Lett.,28, 853 (1972).

    Google Scholar 

  11. (11)

    W. S. Adams:The Observatory,48;Proc. Amer. Acad. Sci. (1925).

  12. (12)

    Publ. Astron. Soc. Pacific,33 (1937);V. G. Fessenkov:Trans. Intern. Astron. Un.,8, 681 (1952).

  13. (13)

    R. V. Pound andG. A. Rebka jr.:Phys. Rev. Lett.,4, 337 (1960);R. V. Pound andJ. L. Snider:Phys. Rev. Lett.,13, 539 (1964);Phys. Rev.,140, B 788 (1965).

    ADS  Article  Google Scholar 

  14. (14)

    J. C. Hafele andR. E. Keating:Science,177, 166 (1972).

    ADS  Article  Google Scholar 

  15. (15)

    R. V. Eötvös, D. Pekar andE. Fekete:Ann. d. Phys.,68, 11 (1922).

    Article  Google Scholar 

  16. (16)

    P. G. Roll, R. Krotkov andR. H. Dicke:Ann. of Phys.,26, 442 (1964).

    MathSciNet  ADS  Article  MATH  Google Scholar 

  17. (17)

    V. B. Braginsky andV. I. Panov:Žurn. Éksp. Teor. Fiz.,61, 875 (1971).

    Google Scholar 

  18. (18)

    L. I. Schiff:Amer. Journ. Phys.,28, 340 (1960);A. Schild: inEvidence for Gravitational Theories, edited byC. Møller (New York, N. Y., 1962);R. H. Dicke: inRelativity, Groups and Topology (New York, N. Y., 1963);H. Y. Chiu andW. F. Hoffmann, editors, andR. H. Dicke: inGravitation and Relativity (New York, N. Y., 1964);K. S. Thorne andC. M. Will:Astrophys. Journ.,163, 611 (1971);S. Weinberg:Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (New York, N. Y., 1972).

    MathSciNet  ADS  Article  Google Scholar 

  19. (19)

    For details seeD. R. Brill andJ. Wheeler:Rev. Mod. Phys.,29, 465 (1957);L. I. Schiff:Amer. Journ. Phys.,28, 340 (1960);R. H. Dicke:Amer. Journ. Phys.,28, 344 (1960);J. N. Bahcall andM. Schmidt:Phys. Rev. Lett.,18, 1294 (1967);K. S. Thorne, C. M. Will andW. T. Ni:Theoretical Framework for Testing Relativistic Gravity (Pasadena, Cal., 1971);K. S. Thorne, D. L. Lee andA. P. Lightman:Phys. Rev. D,7, 3563 (1973);A. P. Lightman andD. L. Lee:Phys. Rev. D,8, 364 (1973);C. W. Misner, K. S. Thorne andJ. A. Wheeler:Gravitation (S. Francisco, Cal., 1973).

    MathSciNet  ADS  Article  MATH  Google Scholar 

Download references

Author information



Additional information

To speed up publication, the authors of this paper have agreed to not receive the proofs the correction.

Переведено редакцией.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Briatore, L., Leschiutta, S. Evidence for the Earth gravitational shift by direct atomic-time-scale comparison. Nuov Cim B 37, 219–231 (1977). https://doi.org/10.1007/BF02726320

Download citation