Skip to main content
Log in

Thermodynamics of mixtures and plasmas at partial equilibrium

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The usual approach of classical statistical mechanics is employed to describe the partial equilibrium of a chemically reacting mixture of gases. It is assumed that each constituent, has a temperature peculiar to itself and deviates from the idela-gas state. A cluster expansion is obtained in a parametric form for the equation of state of the mixture as a whole. The case of a plasma is treated by the correlation function method to arrive at an expression of the free energy, which, in turn, is exploited to give a generalized ionization condition for a multitemperature plasma.

Riassunto

Nell’ambito della statistica classica si studia l’equilibrio termico parziale di una mistura di gas chimicamente reagenti. Ciascun costituente viene considerato come gas quasi-ideale con una propria temperatura. Si ottiene uno sviluppo in serie dell’equazione di stato analogo a quello per un gas ad una data temperatura (cluster expansion). Viene trattato poi il caso del plasma con l’uso delle funzioni di correlazione. Si ricava così una espressione dell’energia libera che consente di generalizzare la condizione di equilibrio di ionizzazione in un plasma a piú temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kannappan andT. K. Bose:Phys. Fluids,20, 1668 (1977).

    Article  ADS  Google Scholar 

  2. M. L. Mittal andG. Paran Gowda:J. Appl. Phys.,59, 1042 (1986).

    Article  ADS  Google Scholar 

  3. H. Hamabata andT. Namikawa:J. Plasma Phys.,33 443 (1985).

    Article  ADS  Google Scholar 

  4. G. Ben Dor andO. Igra:J. Plasma Phys.,27, 377 (1982).

    Article  ADS  Google Scholar 

  5. L. Bighel, A. R. Collins andN. F. Cramer:J. Plasma Phys.,18, 77 (1977).

    Article  ADS  Google Scholar 

  6. H. Grad:Theory of Rarefied Gas Dynamics, edited byF. Devienne (Pergamon Press, London, 1960).

    Google Scholar 

  7. H. R. Baum andT. M. Fang:Phys. Fludis,15, 1771 (1972).

    Article  ADS  Google Scholar 

  8. T. F. Morse:Phys. Fluids,10, 1420 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  9. N. T. Dunwoody andI. Muller:Arch. Ration. Mech. Anal.,29, 344 (1968).

    Article  MathSciNet  Google Scholar 

  10. A. Morro andM. Romeo:Nuovo Cimento D,7, 539 (1986).

    Article  ADS  Google Scholar 

  11. K. Huang:Statistical Mechanics (J. Wiley & Sons, New York, N. Y., 1963).

    Google Scholar 

  12. L. Landau andE. Lifchitz:Physique statistique (Mir, Moscow, 1967).

    Google Scholar 

  13. A. Morro andM. Romeo:J. Non-Equilib. Thermodyn., to appear.

  14. J. E. Mayer andM. G. Mayer:Statistical mechanics (J. Wiley & Sons, New York, N. Y., 1940).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeo, M. Thermodynamics of mixtures and plasmas at partial equilibrium. Nuov Cim B 105, 243–257 (1990). https://doi.org/10.1007/BF02726100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02726100

PACS

PACS

PACS

Navigation