Skip to main content
Log in

Imperfections, lattice constants and densities of cold-drawn and of recrystallized aluminium wires

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

Aluminum contains in lesser or larger amounts excess atoms, depending on the kind of mechanical or thermal treatment and on the concentration of trace impurities. The number of excess atoms in a 99.9 % pure recrystallized Al wire is 18 per 10 000 unit cells, and they may be a constituent of the denser segregations. The lattice constant of a cold drawn Al wire in the direction of its axis was slightly smaller (a 25=4.049 44) than that of the recrystallized wire (a 25=4.049 47 Å), but was larger in the transverse direction (a 25=4.049 63 Å). The thermal expansion coefficient of the recrystallized wire (α=22.9·10−6) between 10 and 60 °C did not differ (significantly) from that of the hard drawn wires. The density of the whole hard wire wasd 25=2.700 4 g/cm3 (core −2.698 9), that of the recrystallized wire was smaller (2.699 3 g/cm3). The concentration of interstitials was largest in the outside layers of the wire (at least 4 atoms per 1 000 unit cells or 1.5·1013 atoms per cm2). Previous measurements, giving lower densities for cold worked metals, may be explained by the fact that crack and capillary formation during cold work frequently outbalance the effect of density increase due to increase of interstitial atom (blocking dislocation) concentration, created by the process of slipping and deformation. Strain hardening appears then as a consequence of the increasing number of interstitial atoms. The latter processes are in agreement with the theories as discussed bySchmid andBoas. From the density decrease of the hard wire (after heating) the volume of submicroscopic fissures per cm3 was estimated: 10−4 cm3. They may be created by moving dislocations and vacancies (formation of dislocation cracks), during the deformation process. Only both, lattice constant and density measurements of the same material give a correct picture of conditions inside (in terms ofn′) of a deformed as well as of a recrystallized metal or another crystalline material.

Riassunto

L’alluminio contiene atomi in eccesso in maggiore o minore quantità, in dipendenza del genere di trattamento termico o meccanico e della concentrazione delle tracce di impurità. Il numero di atomi in eccesso in un filo di alluminio ricristallizzato puro al 99.9% è 18 su 10 000 celle unitarie, e questi atomi possono essere un costituente delle aggregazioni più dense. La costante reticolare di un filo di alluminio tirato a freddo era in direzione del suo asse leggermente minore (α 25=4.0494 Å) di quella di un filo ricristallizzato (α 25=4.049 47 Å), ma in direzione trasversale era maggiore (α25=4.049 63 Å). Il coefficiente di dilatazione termica del filo ricristallizzato (α=22.9·10−6) fra 10 e 16 °C non differiva (in maniera significativa) da quello dei fili trafilati temperati. La densità complessiva del filo temperato erad 25=2.700 4 g/cm3 (strato centrale −2.698 9), quella del filo ricristallizzato era minore (2.699 3 g/cm3). La concentrazione delle particelle interstiziali era maggiore negli strati esterni del filo (almeno 4 atomi ogni 1000 celle unitarie o 1.5·1013 atomi per cm2). Le misure precedenti, che davano densità inferiori per i metalli lavorati a freddo, possono essere spiegate dal fatto che la fessurazione e la formazione di cavità capillari durante la lavorazione a freddo spesso equilibrano l’effetto dell’aumento di densità dovuto all’aumento della concentrazione di atomi interstiziali (blocking dislocation), creato dal processo di scorrimento e deformazione. Lo « strain hardening » sembra dunque esser conseguenza del crescente numero di atomi interstiziali. Quest’ultimi processi sono in accordo con le teorie esposte daSchmid eBoas. Dalla diminuizione di densità del filo temperato (in seguito a riscaldamento) si stimò il volume di fessure submicroscopiche per cm3: 10−4 cm3. Queste possono essere create dallo spostarsi delle dislocazioni e vacanze (formazione di fessure per dislocazione) durante il processo di deformazione. Solo la costante reticolare e le misure di densità dello stesso materiale, danno un quadro corretto delle condizioni interne (in termini din′) di un metallo, od altro materiale cristallino, deformato oppure ricristallizzato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seee.g. inG. Tammann:Metallkunde, 4-th Ed. (Leipzig, 1932), p. 169–172.

  2. W. C. Burgers, inG. Masing:Handbuch der Metallphysik (Leipzig, 1940), vol.3, 2, p. 101.

    Google Scholar 

  3. J. S. Smart, A. A. Smith andJ. A. Philips:Am. Inst. M. M. Eng.,143, 272 (1941).

    Google Scholar 

  4. N. F. Mott:Proc. Roy. Soc., A220, 1 (1953).

    Article  ADS  Google Scholar 

  5. A. N. Stroh:Phil. Mag.,2, 1 (1957).

    Article  ADS  Google Scholar 

  6. M. E. Straumanis andY. N. Wang:Corrosion,12, 177, 181 (1956).

    Article  Google Scholar 

  7. W. Boas: inDislocations and Mechanical Properties of Crystals,J. C. Fisher and Assoc. (New York, 1957), p. 342, 346.

  8. J. L. Snoek:Phil. Mag.,41, 1188 (1950).

    Article  Google Scholar 

  9. L. M. Clarebrough, M. E. Hargreaves andG. W. West:Phil. Mag.,1, 528 (1956), alsoProc. Roy. Soc., A232, 252 (1955).

    Article  ADS  Google Scholar 

  10. M. E. Straumanis:Acta Cryst.,2, 83 (1949);Chimia,12, 136 (1958).

    Article  Google Scholar 

  11. M. E. Straumanis:Phys. Rev.,92, 1155 (1953);95, 566 (1954).

    Article  ADS  Google Scholar 

  12. H. P. Klug andL. E. Alexander:X-ray Diffraction Procedures (New York, 1954), p. 454.

  13. M. Straumanis andA. Ievinš:Die Präzisionsbestimmung von Gitterkonstanten nach der asymmetrischen Methode (Berlin, 1940). Partial translation byK. E. Beu: Dept. of Commerce, Washington 25, D.C. (1959).

  14. M. E. Straumanis:Journ. Appl. Phys.,20, 726 (1949).

    Article  ADS  Google Scholar 

  15. M. E. Straumanis:Analyt. Chemistry,25, 700 (1952).

    Article  Google Scholar 

  16. M. E. Straumanis:Rev. Scient. Instr.,22, 843 (1951).

    Article  ADS  Google Scholar 

  17. M. E. Straumanis andC. H. Cheng:Inst. Metals,88, 287 (1959–60).

    Google Scholar 

  18. M. E. Straumanis:Zeits. f. Kristallogr.,104, 167, 173 (1942).

    Google Scholar 

  19. M. Straumanis:Acta Cryst.,8, 654 (1955).

    Article  Google Scholar 

  20. J. B. Nelson andD. F. Riley:Proc. Phys. Soc.,57, 160 (1945).

    Article  ADS  Google Scholar 

  21. L. V. Azároff andM. J. Buerger:The Powder Method (New York, 1958), p. 231, 238.

  22. M. E. Straumanis:Journ. Appl. Phys.,30, 1965 (1959).

    Article  ADS  Google Scholar 

  23. M. E. Straumanis:Amer. Mineralog.,38, 662 (1953).

    Google Scholar 

  24. Y. Beers:Theory of Error (Cambridge, Mass., 1953).

  25. M. E. Straumanis:Chimia,12, 136, 140 (1958).

    Google Scholar 

  26. J. C. Blade, J. W. H. Clare andH. J. Lamb:Acta Met.,7, 136 (1959); see alsoJ. Calvet, J. J. Trillat andM. Paid:Compt. Rend. (1935), p. 426.

    Article  Google Scholar 

  27. A. Ievinš andM. Straumanis:Zeits. Physik. Chem., B34, 402 (1936).

    Google Scholar 

  28. M. E. Straumanis andT. Ejima:Journ. Chem. Phys.,32, 629 (1960).

    Article  ADS  Google Scholar 

  29. M. E. Straumanis andT. Ejima:Zeits. Physik. Chemie,23, 440 (1960).

    Article  Google Scholar 

  30. B. F. Figgins, G. O. Jones andD. P. Riley:Phil. Mag.,1, 747, 754 Tab. III (1956).

    Article  ADS  Google Scholar 

  31. E. R. Jette andF. Foote:Journ. Chem. Phys.,3, 605 (1935).

    Article  ADS  Google Scholar 

  32. A. J. C. Wilson:Proc. Phys. Soc.,53, 235 (1941).

    Article  ADS  Google Scholar 

  33. H. J. Axon andW. Hume-Rothery:Proc. Roy. Soc., A193, 1 (1948).

    Article  ADS  Google Scholar 

  34. C. G. Maier:Trans. AIME,122, 121 (1936).

    Google Scholar 

  35. T. M. Lowry andR. G. Parker:Journ. Chem. Soc. Tr.,107, 1005, 1013, 1018 (1915).

    Article  Google Scholar 

  36. M. Straumanis:Zeits. f. Phys.,49, 55 (1949).

    Google Scholar 

  37. A. Smakula, J. Kalnajs andV. Sils:Phys. Rev.,99, 1747 (1955).

    Article  ADS  Google Scholar 

  38. R. B. Hill andH. J. Axon:Research Corr.,6, 235 (1953).

    Google Scholar 

  39. U. Dehlinger:Zeits. Krist.,75, 241 (1930).

    Google Scholar 

  40. E. A. Owen, Y. H. Liu andD. P. Morris:Phil. Mag., (7)39, 831 (1948).

    Article  Google Scholar 

  41. S. L. Smith andW. A. Wood:Proc. Roy. Soc. (Lond.),182, 404 (1944).

    Article  ADS  Google Scholar 

  42. See alsoC. S. Barrett:Structure of Metals (New York, 1952), p. 431, 443.

  43. C. Crussard andF. Aubertin:Rev. Metall.,46, 354 (1949).

    Google Scholar 

  44. G. B. Greenough:Progr. Metal Phys.,3, 176 (1952);Nature,160, 258 (1947).

    Article  ADS  Google Scholar 

  45. A. R. Rosenfield andB. L. Averbach:Journ. Appl. Phys.,47, 154 (1956).

    Article  ADS  Google Scholar 

  46. Dr.A. Niggli (Zürich, E.T.H.) suggested a rhombohedral deformation of the cubic cell. However, the calculated number of atoms per unit cell was the same within the limits of error.

  47. A. L. Titchener andM. B. Bever:Progr. Metal Phys.,7, 247, 322 (1958).

    Article  ADS  Google Scholar 

  48. M. E. Straumanis:Zeits. Kristallogr., (A)83, 29 (1932).

    Google Scholar 

  49. E. Schmid andW. Boas:Kristallplastizität (Berlin, 1935); English ed. (London, 1950).

  50. W. Boas:Physics of Metals and Alloys (New York, 1949), p. 131, 132.

  51. P. B. Hirsch:Progr. Metal Phys.,6, 236, 252, 292 (1956). See also various places inJ. C. Fisher and Assoc.:Dislocations and Mechanical Properties of Crystals (New York, 1956).

    Article  ADS  Google Scholar 

  52. G. I. Taylor:Proc. Roy. Soc., A145, 362, 388 (1934).

    Article  ADS  Google Scholar 

  53. A. Seeger andP. Haasen:Phil. Mag., (8),3, 470 (1958).

    Article  ADS  Google Scholar 

  54. W. M. Lomer:Phil. Mag., (8),2, 1053 (1957).

    Article  ADS  Google Scholar 

  55. Seee.g. J. Harwood inW. D. Robertson:Stress Corrosion Cracking (New York, 1956), p. 9.

  56. G. Tamman andH. Bredemeier:Zeits. anorg. allgem. Chem.,142, 54 (1925).

    Article  Google Scholar 

  57. W. A. Wood:Phil. Mag., (8),3, 692 (1958).

    Article  ADS  Google Scholar 

  58. F. Seitz:Advanc. Physics,1, 43 (1952).

    Article  ADS  Google Scholar 

  59. J. W. Allen:Phil. Mag.,4, 1406 (1959).

    Google Scholar 

  60. A. S. Keh, J. C. N. Li andT. T. Chou:Acta Met.,7, 694 (1959).

    Article  Google Scholar 

  61. Seee.g. G. Tamman andC. L. Wilson:Zeits. anorg. allgem. Chem.,173, 156 (1928).

    Article  Google Scholar 

  62. Seee.g. W. M. Lomer:Progr. Metal Phys.,8, 255, 289 (1959).

    Article  ADS  Google Scholar 

  63. A. W. Lawson:Progr. Metal Phys.,6, 1 (1956).

    Article  ADS  Google Scholar 

  64. H. R. Pfeiffer:Journ. Appl. Phys.,29, 1581 (1958).

    Article  ADS  Google Scholar 

  65. G. Tamman andM. Straumanis:Zeits. anorg. allgem. Chem.,169, 365 (1928).

    Article  Google Scholar 

  66. F. B. Cuff andN. J. Grant:Journ. Inst. Metals,87, 248 (1958–59).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented in part byM. E. Straumanis at the University of Rome on April 14 1958, under the title:Imperfezioni nell’alluminio ricristallizzato e lavorato a freddo e incrudimento.

The present investigation was sponsored by National Science Foundation under the contract 2099-g-2585.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straumanis, M.E., Ejima, T. Imperfections, lattice constants and densities of cold-drawn and of recrystallized aluminium wires. Nuovo Cim 18 (Suppl 1), 48–64 (1960). https://doi.org/10.1007/BF02726037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02726037

Navigation