Skip to main content
Log in

Invariants of general relativity

I. — Canonical formalism

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

It is shown that, if the Einstein equations are satisfied, the gravitational field invariants must be functions of the Dirac canonical variables only. It is further shown that the non-canonical variablesG can beexplicitly expressed as functions of the canonical ones (and their first time derivatives) and therefore can be eliminated from the Einstein equations.

Riassunto

Si mostra che, se le equazioni di Einstein sono soddisfatte, gli invarianti del campo gravitazionale devono essere funzioni delle sole variabili canoniche di Dirac. Si mostra inoltre che le variabili non canonicheG possono essere espresse esplicitamente come funzioni di quelle canoniche (e delle loro prime derivate temporali) e quindi possono essere eliminate dalle equazioni di Einstein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac:Proc. Roy. Soc., A246, 333 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  2. P. A. M. Dirac:Phys. Rev.,114, 924 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. P. G. Bergmann:Nuovo Cimento,3, 1177 (1956).

    Article  MathSciNet  Google Scholar 

  4. P. G. Bergmann:Helv. Phys. Acta Suppl.,4, 79 (1956).

    MATH  Google Scholar 

  5. E. Newman andP. G. Bergmann:Rev. Mod. Phys.,29, 443 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A. Komar:Phys. Rev.,111, 1182 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. P. G. Bergmann andA. B. Komar:Status report on the quantization of the gravitational field (preprint, 1960).

  8. A. Peres andN. Rosen:Nuovo Cimento,13, 430 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  9. For agiven metric, it is not always possible to find four invariants which are functionally independent,e.g. when there exists a group of motions (13). However, we here consider the invariants not as functions of the coordinates, but as functions of the CV, so that it is always possible to find four functionally independent invariants,e.g. the Witten curvature invariants (14), which include no higher than first derivatives ofp mn and second derivatives ofg mn.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A. Komar:Proc. Nat. Acad. Sci.,41, 758 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. L. Witten:Phys. Rev.,113, 357 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. J. L. Anderson:Phys. Rev.,110, 1197 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. R. Arnowitt, S. Deser andC. W. Misner:Phys. Rev.,117, 1595 (1960) and118, 1100 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Since this paper was submitted for publication, some similar results were obtained byP. G. Bergmann andA. Komar:Phys. Rev. Lett.,4, 432 (1960).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partly supported by the U. S. Air Force, through the European Office of the Air Research and Development Command.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peres, A. Invariants of general relativity. Nuovo Cim 18 (Suppl 1), 32–35 (1960). https://doi.org/10.1007/BF02726035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02726035

Navigation