Skip to main content
Log in

A covariant conservation theorem in general relativity

Ковариантная теорема сохранения в общей теории относительности

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The transformation of the Hamilton action integral of general relativity under infinitesimal co-ordinate transformations is used to derive a tensorial conservation theorem for the gravitational field. The total gravitational field is split into two parts: a «background» field (assumed to be given) and a perturbative part. The resulting conservation theorem is exact, covariant and of the Poynting type,i.e. only first derivatives of the perturbative field appear in it.

Riassunto

Si usa la trasformazione dell’integrale d’azione di Hamilton della relatività generale rispetto a trasformazioni infinitesime delle coordinate per dedurre un teorema tensoriale di conservazione per il campo gravitazionale. Si divide il campo gravitazionale totale in 2 parti: un campo «di fondo» (che si suppone dato) e una parte perturbativa. Se ne ottiene un teorema di conservazione esatto, covariante e del tipo di Pointing; cioè in esso appaiono solo le derivate prime del campo perturbativo.

Режюме

Преобразование интеграла действия общей теории относительности при бесконечно малых преобразованиях координат используется для вывода тензорной теоремы сохранения для гравитационного поля. Полное гравитациное поле расщепляется на две части: «фоновое» поле (предполагается заданным) и пертурбационная часть. Полученная теорема сохранения является точной, ковариантной и имеет форму теоремы Пойнтинга, т.е. в ней появляются только первые производные пертурбационного поля.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SeeP. Bergmann:Introduction to the Theory of Relativity (Englewood Cliffs, N. J., 1942).

  2. P. Bergmann:Phys. Rev.,112, 287 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Goldberg:Phys. Rev.,89, 263 (1953);P. von Freund:Am. Math.,40, 417 (1939).

    Article  ADS  Google Scholar 

  4. P. Bergman:loc. cit. SeeP. Bergmann:Introduction to the Theory of Relativity (Englewood Cliffs, N. J., 1942).

  5. We use German letters to denote tensor densities. Thusg μν=ωg μν, whereω=(−detg μν )1/2, andg μν has signatureRu-+ when reduced to diagonal form.

  6. ThusΓ λ μν,σ =∂Γ λ μν /∂x σ . Similarly, we use the semi-colon to denote covariant differentiation,e.g. g μν;σ =Γ μν,σ g μϱ Γ ϱ νσ g νϱ Γ ϱ μσ .

  7. For a general method for computing these co-ordinate-induced variations seeH. Weyl:Space-Time-Matter (New York, N. Y., 1950).

  8. The subscript (0) placed after an index of covariant differentiation means that the background field affine connectiongG ϱ μν(0) is to be used in computing it. ThusA μ;ν(0) =A μ;ν =A σ Γ μ σν(0) , etc.

  9. This statement is necessarily somewhat imprecise since, due to the nonlinearity of the field equations, no unique division of the total field exists which can be attributed to contributions from separate sources.

  10. A conservation theorem of this type for the special case where the background field is flat seems to have been first derived byN. Rosen:Phys. Rev.,57, 147 (1940).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Перевебено ребакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ging, J.L., Ferrell, T.L. A covariant conservation theorem in general relativity. Nuov Cim B 24, 189–196 (1974). https://doi.org/10.1007/BF02725956

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02725956

Navigation