Skip to main content
Log in

A nonlocal infinite-component wave equation with a physical mass spectrum

Нелокальное бесконечно-комп онентное волновое уравнение с физическим спектром масс

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

An infinite-component wave equation is studied, which involves the nonlocal operatorW/p 2, whereW is the Pauli-Lubansky invariant. A method of quantization is proposed, which leads to a local commutation relation for the field. In particular a wave equation with a linear mass spectrum and without unphysical solutions is considered. A suitable choice of the Lagrangian gives rise to an algebra of conserved currents free of Schwinger terms in the time-time commutators.

Riassunto

Si studia un'equazione d'onda ad infinite componenti che contiene l'operatore non localeW/p 2, doveW è l'invariante di Pauli e Lubansky. Viene proposto un metodo di quantizzazione che dà luogo a una relazione di commutazione locale per il campo. In particolare si prende in considerazione un'equazione d'onda con uno spettro di massa lineare e che non ha soluzioni non fisiche. Un'opportuna scelta della lagrangiana dà luogo ad un'algebra delle correnti conservate senza termini di Schwinger nei commutatori tempo-tempo.

Резюме

Исследуется волновое уравнение с бесконечным числом компонент, которое содержит нелокальный операторW/p 2, гдеW представляет инвариант Паули-Любанского. Предлагается метод квантования, который приводит к локальному коммутационному соотношению для поля. В частности, рассматривается волновое уравнение с линейным спектром масс, и которое не имеет нефизических решений. Надлежащий выбор лагранжиана приводит к алгебре сохраняющихся токов без швингеровских членов в коммутаторах «время-время».

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nambu:Phys. Rev.,160, 1171 (1967);C. Fronsdal:Phys. Rev.,171, 1811 (1968);R. C. Hwa:Nuovo Cimento,56 A, 107, 127 (1968);L. O'Raifeartaigh:Proceedings of the Fifth Coral Gables Conference (1968);T. Takabayasi:Progr. Theor. Phys. Suppl.,41, 130 (1968).

    Article  ADS  Google Scholar 

  2. G. Cocho, C. Fronsdal andR. White:Phys. Rev.,180, 1547 (1969);C. Fronsdal:Phys. Rev.,182, 1564 (1969);185, 1768 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Budini:Proceedings of the VI International School of Physics at Schladming (1967);D. Tz. Stoyanov andI. T. Todorov:Journ. Math. Phys.,9, 2146 (1968).

  4. R. Casalbuoni, R. Gatto andG. Longhi:Lett. Nuovo Cimento,2, 159, 166 (1969); a more detailed work of the same authors is to be published on thePhys. Rev.

    Article  Google Scholar 

  5. A. O. Barut andG. H. Mullen:Ann. of Phys.,20, 203 (1962); for a general discussion on the problem of handling higher order Lagrangians see alsoA. Pais andG. E. Uhlenbeck:Phys. Rev.,79, 145 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Ostrogradski (1850), as quoted inE. T. Whittaker:Analytical Dynamics (Cambridge, 1937), p. 265.

  7. For the use of the invariant function\(\bar D(x)\) in a Lagrangian context, see also:J. R. Fox:Nucl. Phys.,15 B, 413 (1970);E. C. G. Sudarshan:Physics of complex mass particles, University of Austin preprint, January 1970.

    Article  ADS  Google Scholar 

  8. SeeP. Roman:Introduction to Quantum Field Theory (New York, 1969). In the present paper we shall use the notations as in this book.

  9. J. Schwinger:Phys. Rev.,82, 914 (1951);91, 713 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  10. δμ(x,u) is defined by the equation\(\int\limits_\sigma {f(x)\delta ^\mu (x,y)d\sigma _\mu (x)} = f(y)\), and δ(x,y=n μδμ(x,y), wheren μ is the normal to the surface σ.

  11. For a detailed study of the groupSL 2.c and of the invariant wave equations see:M. A. Naimark:Les représentations linéaires du groupe de Lorentz (Paris, 1962);I. M. Gel'fand, R. A. Minlos andZ. Ya. Shapiro:Representations of Rotations and Lorentz Groups and their Applications (London, 1963).

  12. We consider only unitary representations since for a nonunitary representation ofSL 2.C vacuumlike solutions are absent.

  13. It should be necessary to spend some words on the existence of a Lagrangian (Hermitian bilinear invariant form) for a givenSL 2.C representation, but the reader can find a detailed discussion of this point in ref. (4). Appendix B.

    Article  Google Scholar 

  14. N. Mukunda:Phys. Rev.,183, 1486 (1969).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casalbuoni, R., Longhi, G. A nonlocal infinite-component wave equation with a physical mass spectrum. Nuovo Cimento A (1965-1970) 70, 329–343 (1970). https://doi.org/10.1007/BF02725378

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02725378

Keywords

Navigation