Skip to main content
Log in

Electric field, avalanche growth and signal development in micro-strip gas chambers and micro-gap chambers

  • Published:
La Rivista del Nuovo Cimento (1978-1999) Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Oed:Position-sensitive detector with microscopic anode for electron multiplication with gases, Nucl. Instrum. Methods Phys. Res. A,263, 351 (1988).

    Article  ADS  Google Scholar 

  2. F. Angelini et al.:A microstrip avalanche chamber with two-dimensional readout, Nucl. Instrum. Methods Phys. Res. A,283, 69 (1989).

    Google Scholar 

  3. F. Angelini et al.:The beam study of the perfomance of the microstrip gas avalanche chamber, IEEE Trans. Nucl. Sci., NS-37, 112 (1990).

    Article  ADS  Google Scholar 

  4. F. Angelini et al.: CERN-PPE/-122.

  5. F. Angelini et al.:The microstrip gas chamber, Nucl. Phys. B,23-A, 254 (1991).

    Article  ADS  Google Scholar 

  6. F. Angelini et al.:A MSGCwith true two-dimensional and pixel readout, Nucl. Instrum. Methods Phys. Res. A,323, 229 (1992).

    Article  ADS  Google Scholar 

  7. P. Savard et al.: to be published inNucl. Instrum. Methods Phys. Res.

  8. H. Stahl et al.:First steps towards a foil microstrip chamber, Nucl. Instrum. Methods Phys. Res. A,297, 95 (1990).

    Article  ADS  Google Scholar 

  9. R. Bouclier et al.:The coated cathode conductive layer chamber, Nucl. Instrum. Methods Phys. Res. A,310, 74 (1991).

    Article  ADS  Google Scholar 

  10. S. F. Biagi et al.:Initial investigations of the performance of a microstrip gas-avalanche chamber fabricated on a thin silicon-dioxide substrate, Nucl. Instrum. Methods Phys. Res. A,323, 258 (1992).

    Article  ADS  Google Scholar 

  11. R. Fang et al.: Charge accumulation at the interface between two dielectrics and gas gain variations of MSGC. CRN 93-61.

  12. T. Nagae et al.:Development of MSGCwith multi-chip technology, Nucl. Instrum. Methods Phys. Res. A,323, 263 (1992).

    Article  Google Scholar 

  13. S. Schmidt et al.:Simulation of electrostatic properties and gas amplification in MSGCand comparison with experiments, Nucl. Instrum. Methods Phys. Res. A,344, 558 (1944).

    Article  ADS  Google Scholar 

  14. J. J. Florent et al.:The electrostatic field in microstrip chambers and its influence on detector performance, Nucl. Instrum. Methods Phys. Res. A,329, 125 (1993).

    Article  ADS  Google Scholar 

  15. F. Angelini et al.:A MSGCon a silicon substrate, Nucl. Instrum. Methods Phys. Res. A,314, 450 (1992).

    Article  ADS  Google Scholar 

  16. F. Angelini et al.:The micro-gap chamber, Nucl. Instrum. Methods Phys. Res. A,335, 69 (1993).

    Article  ADS  Google Scholar 

  17. M. Matoba et al.:Three-dimensional Monte Carlo simulation of the electron avalanche around an anode wire of a proportional counter, IEEE Trans. Nucl. Sci., NS-32, 541 (1985).

    Article  ADS  Google Scholar 

  18. J. Groh et al.:Computer simulation of the electron avalanche in cylindrically symmetric electric fields, Nucl. Instrum. Methods Phys. Res. A,283, 730 (1989).

    Article  ADS  Google Scholar 

  19. V. Palladino et al.:Application of classical theory of electrons in gases to drift proportional chambers, Nucl. Instrum. Methods Phys. Res.,128, 323 (1975).

    Article  ADS  Google Scholar 

  20. R. C. Wetzel et al.:Absolute cross-section for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method, Phys. Rev. A,35, 559 (1987).

    Article  ADS  Google Scholar 

  21. J. Bretagne et al.:Relativistic electron-beam-produced plasmas: collisions cross-section and loss function in argon, J. Phys. D,19, 761 (1986).

    Article  ADS  Google Scholar 

  22. H. Tanaka et al.:Differential cross-sections for elastic scattering of electrons by methane in the energy range of 3to 20 eV,J. Phys. B,15, 3305 (1982).

    Article  ADS  Google Scholar 

  23. O. J. Orient et al.:Electron impact ionization of water, carbon oxyde, carbon dioxyde and methane, J. Phys. B,20, 2923 (1987).

    Article  Google Scholar 

  24. L. G. Christophorou et al.:Fast gas mixtures for gas-filled detectors, Nucl. Instrum. Methods Phys. Res.,163, 141 (1979).

    Article  ADS  Google Scholar 

  25. S. F. Biagi:A multiterm Boltzmann analysis of drift velocity, diffusion, gain and magnetic effects in argon-methane-water-vapour mixtures, Nucl. Instrum. Methods Phys. Res. A,283, 716 (1989).

    Article  ADS  Google Scholar 

  26. A. Sharma et al.:A measurement of the first Townsend coefficient in argon-based mixtures at high fields, Nucl. Instrum. Methods Phys. Res. A,323, 280 (1992).

    Article  ADS  Google Scholar 

  27. L. B. Loeb:Basic Processes of Gaseous Electronic (University of California, 1955).

  28. P. J. B. M. Rachinhas et al.:Monte Carlo simulation of xenon-filled cylindrical proportional counters, IEEE Trans. Nucl. Sci.,41, 984 (1994).

    Article  ADS  Google Scholar 

  29. F. Hartjes et al.:Operation of the microstrip gas detector, Nucl. Instrum. Methods Phys. Res. A,310, 88 (1991).

    Article  ADS  Google Scholar 

  30. H. Sakurai et al.:Dependence of energy resolution on anode diameter in xenon proportional counters, Nucl. Instrum. Methods Phys. Res. A,313, 155 (1992).

    Article  ADS  Google Scholar 

  31. R. Bouclier et al.:High flux operation of microstrip gas chambers on glass and plastic supports, Nucl. Instrum. Methods Phys. Res. A,232, 240 (1992).

    Article  ADS  Google Scholar 

  32. R. Bouclier et al.:Performance of gas microstrip chambers on glass substrata with electronic conductivity, Nucl. Instrum. Methods Phys. Res. A,332, 100 (1993).

    Article  ADS  Google Scholar 

  33. J. E. Bateman et al.: Substrate-induced instability in gas microstrip detectors, RAL/92-085.

  34. F. Angelini et al.:A thin, large-area microstrip gas chamber with strip and pad readout, Nucl. Instrum. Methods Phys. Res. A,336, 106 (1993).

    Article  ADS  Google Scholar 

  35. G. D. Alkhazov:Statistics of electron avalanches and ultimate resolution of proportional counter, Nucl. Instrum. Methods Phys. Res.,89, 155 (1970).

    Article  ADS  Google Scholar 

  36. F. Angelini et al.:A microstrip avalanche chamber with two stages of gas amplification, Nucl. Instrum. Methods Phys. Res. A,292, 199 (1990).

    Article  ADS  Google Scholar 

  37. J. D. Jackson:Classical Electrodynamics, 2nd edition (Wiley, New York, N.Y., 1975).

    MATH  Google Scholar 

  38. V. Radeka:Low-noise techniques in detectors, Ann. Rev. Nucl. Part. Sci.,38, 217 (1988).

    Article  ADS  Google Scholar 

  39. F. Sauli:Principles of operation of multiwire proportional and drift chambers, Geneva, CERN 77-09, 1977.

  40. R. Sachdeva et al.:Nucl. Instrum. Methods Phys. Res. A,348, 378 (1994).

    Article  ADS  Google Scholar 

  41. S. Gadomski et al.:The deconvolution method of fast pulse shaping at hadron colliders, Nucl. Instrum. Methods Phys. Res. A,320, 217 (1992).

    Article  ADS  Google Scholar 

  42. N. Bingeforts et al.:A novel technique for fast pulse-shaping using a slow amplifier at LHC, Nucl. Instrum. Methods Phys. Res. A,326, 112 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellazzini, R., Spezziga, M.A. Electric field, avalanche growth and signal development in micro-strip gas chambers and micro-gap chambers. Riv. Nuovo Cim. 17, 1–91 (1994). https://doi.org/10.1007/BF02724441

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02724441

Navigation