Il Nuovo Cimento A (1965-1970)

, Volume 92, Issue 3, pp 309–327 | Cite as

Events as fundamental entities in physics

  • E. C. Whipple


Bergson and Whitehead have proposed a point of view where events rather than particles are fundamental entities. We follow this point of view as developed further by Capek and by Stapp by suggesting a framework in which fundamental events are taken to be point-like entities which interact with other fundamental events. Different kinds of fundamental events are to be distinguished by the rules of interaction. Examples of simple rules of interaction are given which lead to propagating patterns of events that can be interpreted as particles. The particles exhibit a wave structure and possess invariants, quantum numbers and quarklike constituents. They can react with each other and decay to form other particles, including antiparticles. A relativistic space-time co-ordinate system appears to be a natural way of organizing the event pattern. We argue that this kind of framework can provide a basis for unifying the concepts of quantum mechanics, elementary-particle structure and relativity.


11.90. - Other topics in general field and particle theory 


Bergson e Whitehead hanno proposto un’interpretazione secondo cui gli eventi piuttosto che particelle sono entità fondamentali. Noi seguiamo questa interpretazione, sviluppata ulteriormente da Capek e Stapp suggerendo un sistema in cui gli eventi fondamentali sono considerati entità puntiformi che interagiscono con altri eventi fondamentali. I differenti tipi di eventi fondamentali si devono distinguere con le regole d’interazione. Si forniscono esempi di semplici regole d’interazione che portano a propagare modelli di eventi che si possono interpretare come particelle. Le particelle presentano una struttura d’onda e possiedono invarianti, numeri quantici e costituenti di tipo quark. Possono interagire l’uno con l’altro e decadere per formare altre particelle, comprese le antiparticelle. Un sistema di coordinate relativistiche spazio-tempo sembra un modo naturale di organizzare il modello degli eventi. Si deduce che questo tipo di sistema può fornire una base per unificare i concetti di meccanica quantistica la struttura delle particelle elementari e la relatività.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    H. Bergson:Creative Evolution, translated byA. Mitchell (Greenwood Press, Westport, Conn., 1975).Google Scholar
  2. (2).
    A. N. Whitehead:Process and Reality (corrected edition), edited byD. R. Griffin andD. W. Sherburne (The Free Press, New York, N. Y., 1978).Google Scholar
  3. (3).
    J. Jeans:The New Background of Science (Macmillan, New York, N. Y., 1933), p. 294.Google Scholar
  4. (4).
    M. Capek:The Philosphical Impact of Contemporary Physics (D. Van Nostrand, Princeton, N. J., 1961).Google Scholar
  5. (5).
    M. Capek:Particles or events?, inPhysical Sciences and History of Physics, edited byR. S. Cohen andM. W. Wartofsky (Reidel, Boston, Mass., 1984), p. 1.CrossRefGoogle Scholar
  6. (6).
    H. P. Stapp:Phys. Rev. D,3, 1303 (1971).CrossRefADSGoogle Scholar
  7. (7).
    H. P. Stapp:Nuovo Cimento B,29, 270 (1975).CrossRefADSGoogle Scholar
  8. (8).
    H. P. Stapp:Found. Phys.,7, 313 (1977).CrossRefADSGoogle Scholar
  9. (9).
    H. P. Stapp:Found. Phys.,9, 1 (1979).MathSciNetCrossRefADSGoogle Scholar
  10. (10).
    N. Bohr:Atomic Theory and the Description of Nature (Cambridge University Press, Cambridge, 1934).zbMATHGoogle Scholar
  11. (11).
    G. F. Chew:The topological bootstrap, inAsymptotic Realms of Physics, Essays in honor of Francis E. Low, edited byA. H. Guth, K. Huang andR. L. Jaffe (The MIT Press, Cambridge, Mass., 1983), p. 49.Google Scholar
  12. (12).
    G. F. Chew:Sci. Prog. (London),51, 529 (1963).Google Scholar
  13. (13).
    S. Gasiorowicz andJ. L. Rosner:Am. J. Phys.,49, 954 (1981).CrossRefADSGoogle Scholar
  14. (14).
    E. C. Zeeman:J. Math. Phys. (N. Y.),5, 490 (1964).MathSciNetCrossRefADSzbMATHGoogle Scholar
  15. (15).
    A. R. Lee andT. M. Kalotas:Am. J. Phys.,43, 434 (1975).CrossRefADSGoogle Scholar
  16. (16).
    J.-M. Levy-Leblond:Am. J. Phys.,44, 271 (1976).CrossRefADSGoogle Scholar
  17. (17).
    N. D. Mermin:Am. J. Phys.,52, 119 (1984).MathSciNetCrossRefADSGoogle Scholar
  18. (18).
    H. Weyl:Nachr. Akad. Wiss. Goettingen, Math.-Phys. Kl.,2, 99 (1921);T. Y. Thomas:The Differential Invariants of Generalized Spaces (Cambridge University Press, New York, N. Y., 1934), p. 21.Google Scholar
  19. (19).
    A. N. Whitehead:The Concept of Nature (Cambridge University Press, Cambridge, 1955), p. 66.Google Scholar
  20. (20).
    N. N. Bogoliubov andD. V. Shirkov:Introduction to the Theory of Quantized Fields (Interscience Publishers, New York, N. Y., 1959), p. 204.Google Scholar

Copyright information

© Società Italiana di Fisica 1986

Authors and Affiliations

  • E. C. Whipple
    • 1
  1. 1.Center for Astrophysics and Space ScienceUniversity of California at San DiegoLa Jolla

Personalised recommendations