Skip to main content
Log in

Generalized spectral decomposition, with application to the reduced transport operator

Обобщенное спектральное разложение и его применение к приведенному транспортному оператору

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The spectral decomposition of certain unbounded operators can, in some cases, be simplified by a method called «generalized spectral decomposition». The generalized spectrum is not necessarily equal to the spectrum, but several useful containment theorems are proved. This technique is applied to the spectral decomposition of the reduced transport operator in one space dimension. In particular, under the assumption that the scattering kernel is degenerate and each element square integrable, it is shown that the generalized spectral decomposition is identical with the ordinary spectral decomposition.

Riassunto

In certi casi si può semplificare la scomposizione spettrale di certi operatori illimitati con un metodo chiamato «decomposizione spettrale generalizzata». Non necessariamente lo spettro generalizzato risulta uguale allo spettro, ma si dimostrano vari utili teoremi di appartenenza. Si applica questa tecnica alla decomposizione spettrale dell’operatore di trasporto ridotto in una dimensione spaziale. In particolare, a condizione che il nocciolo di scattering sia degenere e che ogni elemento sia quadrato integrabile, si fa vedere che la decomposizione spettrale generalizzata è identica alla decomposizione spettrale ordinaria.

Резюме

В некоторых случаях спектральное разложение определенных неограниченных операторов может быть упрощено с помощью метода, называемого «обобщенным спектральным разложением». Обобщенный спектр не обязательно равен рассматриваемому спектру. Доказываются некоторые полезные теоремы. Эта техника применяется к спектральному разложению приведенного транспортного оператора в одномерном пространстве. В частности, предполагая, что ядро рассеяния является вырожденным и каждый элемент квадратично интегрируемым, показывается, что обобщенное спектральное разложение идентично обычному спектральному разложению.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lehner andG. M. Wing:Comm. Pure Appl. Math.,8, 217 (1955);Duke Math. Journ.,23, 125 (1956). See alsoG. M. Wing:An Introduction to Neutron Transport Theory (New York, N.Y., 1962).

    Article  MathSciNet  Google Scholar 

  2. K. Jorgens:Comm. Pure Appl. Math.,11, 219 (1958).

    Article  MathSciNet  Google Scholar 

  3. G. Pimbley:Journ. Math. Mech.,8, 837 (1959).

    MathSciNet  Google Scholar 

  4. R. Van Norton:Comm. Pure Appl. Math.,15, 149 (1962).

    Article  MathSciNet  Google Scholar 

  5. N. Corngold, P. Michael andW. Wollman:Nucl. Sci. Eng.,15, 13 (1963).

    Google Scholar 

  6. M. Nelkin:Physica,29, 261 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Leonard andT. W. Mullikan:Journ. Math. Phys.,5, 399 (1964).

    Article  ADS  Google Scholar 

  8. Y. Shizuta:Progr. Theor. Phys.,32, 489 (1964).

    Article  ADS  Google Scholar 

  9. N. Corngold:Nucl. Sci. Eng.,19, 80 (1964).

    Google Scholar 

  10. S. Albertoni andB. Montagnini:Proceedings of the Symposium on Pulsed Neutron Research, Vol.1, (Vienna, 1965), p. 239;Journ. Math. Anal. Appl.,13, 19 (1966).

    Google Scholar 

  11. R. Bednarz:Proceedings of the Symposium on Pulsed Neutron Research, Vol.1 (Vienna, 1965), p. 259.

    Google Scholar 

  12. J. Mika:Journ. Math. Phys.,7, 833, 839 (1966).

    Article  ADS  Google Scholar 

  13. I. Kuščer andN. Corngold:Phys. Rev.,139, A 981 (1965);140, AB 5 (1965).

    Article  ADS  Google Scholar 

  14. S. Ukai:Journ. Math. Anal. Appl.,18, 297 (1967).

    Article  MathSciNet  Google Scholar 

  15. J. Mika:Nukleonik,9, 303 (1967).

    Google Scholar 

  16. M. Borysiewicz andJ. Mika:Proceedings of the Symposium on Neutron Thermalization and Reactor Spectra, Vol.1 (Vienna, 1967), p. 45.

    Google Scholar 

  17. I. Kuščer:Proceedings of the Symposium on Neutron Thermalization and Reactor Spectra, Vol.1 (Vienna, 1967), p. 3.

    Google Scholar 

  18. H. G. Kaper:Journ. Math. Anal. Appl.,19, 207 (1967).

    Article  MathSciNet  Google Scholar 

  19. J. Dorning:Nucl. Sci. Eng.,33, 65 (1968).

    Google Scholar 

  20. J. J. Duderstadt:Nucl. Sci. Eng.,33, 119 (1968).

    Google Scholar 

  21. I. Vidav:Journ. Math. Anal. Appl.,22, 144 (1968).

    Article  MathSciNet  Google Scholar 

  22. I. Kuščer andI. Vidav:Journ. Math. Anal. Appl.,25, 80 (1969).

    Article  Google Scholar 

  23. N. Corngold: inTransport Theory, SIAM-AMS Proceedings, Vol.1 (Providence, R.I., 1969), p. 79.

  24. J. J. Duderstadt:Journ. Math. Phys.,10, 266 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Meister:ATKE,15, 109 (1970).

    Google Scholar 

  26. P. Silvennoinen andP. F. Zweifel:Nucl. Sci. Eng.,42, 103 (1970).

    Google Scholar 

  27. I. Vidav:Journ. Math. Anal. Appl.,30, 264 (1970).

    Article  MathSciNet  Google Scholar 

  28. Similar problems arise in kinetic theory of gases. For a review, and further references, seeC. Cercignani: inTransport Theory, SIAM-AMS Proceedings, Vol.1 (Providence, R. I., 1969), p. 249.

  29. K. M. Case:Ann. of Phys.,9, 1 (1960);K. M. Case andP. F. Zweifel:Linear Transport Theory (Reading, Mass. 1967).

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Żelazny, A. Kuszell andJ. Mika:Ann. of Phys.,16, 69 (1961);J. Mika:Nucl. Sci. Eng.,11, 415 (1961).

    Article  ADS  Google Scholar 

  31. R. Żelazny andA. Kuszell:Ann. of Phys.,16, 81 (1961);C. E. Siewert andP. F. Zweifel:Ann. of Phys.,36, 61 (1966);C. E. Siewert andP. S. Shiek:Journ. Nucl. Eng.,21, 383 (1966);D. R. Metcalf andP. F. Zweifel:Nucl. Sci. Eng.,33, 3071 (1968);P. Silvennoinen andP. F. Zweifel:TTSP,1, 239 (1971).

    Article  ADS  Google Scholar 

  32. R. Żelazny andA. Kuszell:Proceedings of the Symposium on Physics of Fast and Intermediate Reactors, Vol.2 (Vienna, 1962), p. 55;C. E. Siewert andP. F. Zweifel:Journ. Math. Phys.,7, 2092 (1966);T. Yoshimura andS. Katsuragi:Nucl. Sci., Eng.,33, 297 (1968);J. K. Shultis:Nucl. Sci. Eng.,38, 83 (1969);P. Silvennoinen andP. F. Zweifel:Journ. Quant. Spectr. Rad. Transfer,11, 869 (1971);P. Silvennoinen andP. F. Zweifel:Journ. Math. Phys.,13, 1114 (1971);P. Silvennoinen:TTSP,1, 263 (1971).

    Google Scholar 

  33. R. J. Bednarz andJ. Mika:Journ. Math. Phys.,4, 1283 (1963);J. Ferziger andA. Leonard:Ann. of Phys.,22, 192 (1963);A. Leonard andJ. Ferziger:Nucl. Sci. Eng.,26, 170, 181 (1966);J. R. Mika:Nucl. Sci. Eng.,22, 235 (1965);J. C. Stewart, I. Kuščer andN. McCormick:Ann. of Phys.,40, 321 (1966); also,I. Kuščer: inRecent Development in Transport Theory, edited byP. F. Zweifel andE. Inönü (New York, N. Y., 1967);B. Nicolaenko:Journ. Math. Phys.,11, 174 (1970);P. Jauho andM. Rajamaki:Nucl. Sci. Eng.,43, 145 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  34. R. L. Bowden andC. D. Williams:Journ. Math. Phys.,5, 1527 (1964);I. Kuščer andP. F. Zweifel:Journ. Math. Phys.,6, 1125 (1965);P. A. Newman andR. L. Bowden:Journ. Math. Phys.,11, 2445 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  35. P. A. M. Dirac:Principles of Quantum Mechanics, IV Edition (London, 1958).

  36. J. von Neumann:Mathematical Foundations of Quantum Mechanics, English translation (Princeton, N.J., 1955).

  37. L. Baird andP. F. Zweifel: unpublished.

  38. A normal operator is one which commutes with its adjoint. See, for example,G. Bachman andL. Narici:Functional Analysis (New York, N. Y., 1966).

  39. We shall use terms like «generalized resolvent set», «generalized eigenvector», etc., without further explanation.

  40. N. Dunford andJ. T. Schwarz:Linear Operators, Part I (New York, N. Y., 1958), see p. 298.

  41. This argument is due toYong Moon Park (private communication).

  42. T. Kato:Perturbation Theory for Linear Operators (Berlin, 1966). The essential spectrum is the union of the continuous spectrum with eigenvalues of infinite degeneracy. In most cases of interest, it is simply the continuous spectrum itself.

  43. The elaborate definition of ϕ n thus accomplishes the same effect as did eq. (36), which yielded a simplified operator (eq. (38)) because of a vanishing integral (eq. (37)).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baird, L.C., Zweifel, P.F. Generalized spectral decomposition, with application to the reduced transport operator. Nuovo Cim B 23, 402–416 (1974). https://doi.org/10.1007/BF02723647

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723647

Navigation