Skip to main content
Log in

Mathematical hints in nonlinear problems

Математические указания в нелинейных проблемах

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

We investigate the possible application of an abstract mathematical method, the topological index theory and Krasnosel’ski theorem (a brief account of this theory is given at the end of the paper) for solving nonlinear physical problems, particularly when bifurcation phenomena—with one or more parameters—are expected. Various mathematical results are presented, especially in finite-dimensional cases, in which simple conditions for the existence of nontrivial branching solutions are given, together with a discussion concerning «perturbative» expansions. The case of the presence of some symmetry property is also briefly consieered.

Riassunto

Si studia la possibilitá di applicare un metodo matematico astratto, cioé la teoria dell’indice topologico e il teorema di Krasnosel’ski (di cui si trova un breve sommario nell’ultima parte del lavoro) per risolvere problemi fisici non lineari, particolarmente quando ci si attendono fenomeni di biforcazione, anche a piú parametri. Si presentano vari risultati matematici, specie in dimensione finita, dove si possono fornire semplici condizioni per l’esistenza di rami di soluzioni non banali, insieme con una discussione su sviluppi di tipo perturbativo. Si considera anche brevemente il caso in cui é presente qualche proprietá di simmetria.

Резюме

Мы исследуем возможное применения абстрактного математического метода, теории топологических индексов и теоремы Красносельского (краткий обзор этой теории приведен в Приложении), для решения нелинейных физических проблем, в частности, когда ожидаются явления бифуркации с одним или более параметрами. Проводятся различные математические результаты, особенно в случаях конечного числа измерений, где приводятся простые условия для суцествования нетривальных решений. Также проводятся обсуждение “пертурбационных“ разложений. Вкратце рассматривается случай наличия некототого свойства симметрии.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Michel:Rev. Mod. Phys.,52, 617 (1980).

    Article  ADS  Google Scholar 

  2. Nonlinear Dynamics (edited byR. H. G. Helleman)Ann. N. Y. Acad. Sci., Vol.357 (1980);Y. Schiffmann:Phys. Rep.,64, 87 (1980);M. Nauenberg andD. Scalapino: inLes Houches Winter Adv. Stud. Inst., edited byBrézin, J.-L. Gervais andG. Toulouse,Phys. Rep.,67, 177 (1980);J. P. Eckmann:Rev. Mod. Phys.,53, 643 (1981);B. Hu:Phys. Rep.,91, 235 (1982).

  3. Bifurcation Phenomena in Mathematical Physics and Related Topics, edited byC. Bardos andD. Bessis (NATO Adv. Stud. Inst. Ser., Cargèse, 1979) (Dordrecht, 1980).

  4. J. E. Marsden andM. McCraken:The Hopf Bifurcation and its Applications, inLectures Notes in Appl. Math. Sci., Vol.18 (Berlin, 1976);G. Iooss andD. D. Joseph:Elementary Stability and Bifurcation Theory (Berlin, 1980);Proceedings of the CIME School, Montecatini T., 1983, to be published.

  5. D. H. Sattinger:Group-Theoretic Methods in Bifurcation Theory, inLecture Notes in Math., Vol.762 (Berlin, 1979);Bull. Am. Math. Soc.,3, 779 (1980), andBranching in the presence of symmetry (CBMS Conf. Ser. in Appl. Math.,SIAM, Vol.40 (Philadelphia, 1983)).

  6. A. Vanderbauwhede:Local Bifurcation and Symmetry, inPitman Research Notes in Math, Vol.75 (Boston, 1982);M. Golubitsky; inColloque International des Problèmes etc. (Dordrecht, 1983).

  7. Proceedings of the CIMPA School, Nice, 1983, to be published.

  8. See,e.g.,S.-N. Chow andJ. K. Hale:Methods of Bifurcation Theory (New York, 1982);M. S. Berger:Nonlinearity and Functional Analysis (New York, 1977);P. H. Rabinowitz:Théorie du dégré topologique etc. (Université de Paris VI et CNRS, Paris, 1975).

  9. M. Golubitsky andD. Schaeffer:Commun. Math. Phys.,67, 205 (1979);Commun. Pure Appl. Math.,35, 81 (1982);E. Buzano andM. Golubitsky:Philos. Trans. R. Soc. London, Ser. A,308, 617 (1983);D. Ruelle:Arch. Ration., Mech. Anal.,51, 136 (1973).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. G. Cicogna:Lett. Nuovo Cimento.,31, 600 (1981);Boll. Un. Mat. Ital. B,1, 787 (1982);Lett. Nuovo Cimento,37, 529 (1983).

    Article  MathSciNet  Google Scholar 

  11. Even if, in practice, one usually deals with «continuous» branches of solution, the general definition (8)S.-N. Chow andJ. K. Hale:Methods of Bifurcation Theory (New York, 1982); covers also the case that some sequence of solutionsx n ≠0 inX and λn inR p exists, with λn→λ0 andx n →0 whenn→∞.

  12. See,e.g., ref. (3, 8),Bifurcation Phenomena in Mathematical Physics and Related Topics, edited byC. Bardos andD. Bessis (NATO Adv. Stud. Inst. Ser., Cargèse, 1979) (Dordrecht, 1980).S.-N. Chow andJ. K. Hale:Methods of Bifurcation Theory (New York, 1982); andG. Prodi andA. Ambrosetti:Analisi non lineare (Scuola Normale Superiore, Pisa, 1973).

  13. T. Kato:Perturbation Theory for Linear Operators (Berlin, 1966).

  14. This follows also from analiticity of the projection onU(μ): see ref. (13)T. Kato:Perturbation Theory for Linear Operators (Berlin, 1966).

  15. In this statement, the requirement that ν is odd is directly substituted by the assumption that a nontrivial solution exists. As already noted, the existence of a nonzero solution of eq. (5) ensures, by means of (4′), that also the initial equation, (1) is nontrivially solved. See alsoM. G. Crandall andP. H. Rabinowitz: in ref. (3),Bifurcation Phenomena in Mathematical Physics and Related Topics, edited byC. Bardos andD. Bessis (NATO Adv. Stud. Inst. Ser., Cargèse, 1979) (Dordrecht, 1980). p. 3.

  16. G. Cicogna:Bifurcation from topology and symmetry arguments, inBoll. Un. Mat. Ital. A,3, 131 (1984).

  17. For details, seee.g. ref. (8)S.-N. Chow andJ. K. Hale:Methods of Bifurcation Theory (New York, 1982);

  18. In fact, in definingi τ similarly as in eq. (A. 2), only a finite number of eigenvalues λj of the compact operatorK x (0) appears, namely those eigenvalues for which λj -1 is contained in the open interval (0, τ).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Dipartimento di Fisica, Pisa and I.N.F.N., sezione di Pisa.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cicogna, G., Degiovanni, M. Mathematical hints in nonlinear problems. Nuovo Cim B 82, 54–70 (1984). https://doi.org/10.1007/BF02723577

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723577

PACS. 03.20

Navigation