Skip to main content
Log in

The ADM Lagrangian in extrinsic gravity

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

We consider the properties of the ADAM Lagrangian in the model for gravity based on extrinsic geometry recently developed. In this model the space-time is embedded into a space of more dimensions and the embedding functions are considered as dynamical variables. In spite of the naïve expectatives this Lagrangian depends only on first-order time derivatives of the fields, the embedding functions. This is a nice property since in this case on would expect an easy canonical formulation. Another nice property is the fact that the energy-momentum tensor is identically zero. The shift constraints are easily calculated; however, the lapse constraint has not been calculated since it relies on an involved matrix calculation. After fixing the gauge, this reflects in the impossibility of solving, even when the Legendre transformation is invertible, for the velocities. Furthermore, the gauged energy-momentum tensor is not a tensor density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Tapia:Class. Quantum Gravit.,6, L49 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  2. M. D. Maia:Gen. Relativ. Gravit.,18, 695 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Pavšič:Phys. Lett. A,116, 1 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  4. G. W. Gibbons andD. L. Wiltshire:Nucl. Phys. B,287, 717 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  5. A. A. Logunov andYu. M. Loskutov:Fiz. Elem. Chastis At. Yadra,18, 429 (1987); English translation:Sov. J. Part. Nucl.,18, 179 (1987).

    Google Scholar 

  6. L. D. Landau andE. M. Lifshtz:Teoriya Polyo (Nauka, Moskva, 1973); English translation:The Classical Theory of Fields (Pergamon, Oxford, 1979), 4th revised edition.

    Google Scholar 

  7. M. Ferraris andM. Francaviglia:J. Math. Phys.,26, 1243 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  8. V. Tapia:Nuovo Cimento B,101, 183 (1988).

    Article  ADS  Google Scholar 

  9. V. Tapia: inTopics in Analysis, a volume dedicated to Cauchy, edited byTh. M. Rassias (World Scientific, Singapore, 1989).

    Google Scholar 

  10. L. P. Eisenhart:Riemannian Geometry (Princeton University Press, Princeton, N.J., 1926).

    Google Scholar 

  11. M. Janet:Ann. Soc. Polon. Math.,5, 38 (1926).

    Google Scholar 

  12. E. Cartan:Ann. Soc. Polon. Math.,6, 38 (1927).

    Google Scholar 

  13. A. Friedman:J. Math. Mech.,10, 625 (1961).

    MathSciNet  Google Scholar 

  14. J. Nash:Ann. Math.,63, 20 (1956).

    Article  MathSciNet  Google Scholar 

  15. C. J. Clarke:Proc. R. Soc. London, Ser. A,314, 417 (1970).

    Article  ADS  Google Scholar 

  16. R. E. Greene:Mem. Amer. Math. Soc., n.97, 1 (1970).

    MathSciNet  Google Scholar 

  17. T. Regge andC. Teitelboim:Proceedings of the First Marcel Grossman Meeting, Trieste, Italy, 1975, edited byR. Ruffini (North-Holland, Amsterdam, 1977).

    Google Scholar 

  18. S. Deser, F. A. E. Pirani andD. C. Robinson:Phys. Rev. D,14, 3301 (1976).

    Article  ADS  Google Scholar 

  19. D. M. Gitman, P. M. Lavrov andI. V. Tyutin:J. Phys. A,23, 41 (1990).

    Article  ADS  Google Scholar 

  20. P. G. Bergmann andJ. H. M. Brunings:Rev. Mod. Phys.,21, 480 (1949).

    Article  MathSciNet  ADS  Google Scholar 

  21. P. A. M. Dirac:Phys. Rev.,73, 1092 (1948).

    Article  MathSciNet  ADS  Google Scholar 

  22. P. A. M. Dirac:Can. J. Math.,3, 1 (1951).

    Article  MathSciNet  Google Scholar 

  23. V. A. Fock:Teoriya Prostranstva, Vremeni i Tiagoteniya (Gosdarstvennoe Izdatelstvo Techniko-Teoreticheskoi Literaturi, Moskva, 1955); English translation:The Theory of Space, Time and Gravitation (Pergamon Press, Oxford, 1966), 2nd revised edition.

    Google Scholar 

  24. V. Tapia:Nuovo Cimento B,103, 441 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  25. I. Robinson andY. Ne'eman:Rev. Mod. Phys.,37, 201 (1965).

    Article  ADS  Google Scholar 

  26. R. Arnowitt, S. Deser andC. W. Misner:The Dynamics of General Relativity, inGravitation: an Introduction to Current Research, edited byL. Witten (Wiley, New York, N.Y., 1962).

    Google Scholar 

  27. A. Hanson, T. Regge andC. Teitelboim:Constrained Hamiltonian Systems (Accademia Nazionale dei Lincei, Roma, 1976).

    Google Scholar 

  28. P. A. M. Dirac:Lectures on Quantum Mechanics (Belfer Granduate School of Science, Yeshiva University, New York, N.Y., 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors of this paper have agreed to not receive the proofs for correction.

Partially supported by DADC-CONACYT, Mexico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franke, V.A., Tapia, V. The ADM Lagrangian in extrinsic gravity. Nuov Cim B 107, 611–630 (1992). https://doi.org/10.1007/BF02723170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723170

PACS

Navigation