Skip to main content
Log in

Cardiogel: A biosynthetic extracellular matrix for cardiomyocyte culture

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Tissue-cultured neonatal cardiomyocytes can be successfully maintained in culture on a variety of extracellular matrix components such as laminin, fibronectin, and interstitial collagens (Types I and III).In vivo, however, cardiomyocytes (as well as many other cells) exist in a highly complex extracellular matrix environment composed of, in addition to the above three components, other proteins, proteoglycans, and growth factors. We have developed a procedure for culturing cardiomyocytes on a naturally occurring complete extracellular matrix, Cardiogel. This substrate, synthesized by cardiac fibroblasts, contains laminin, fibronectin, Types I and III collagen, and proteoglycans. When compared to cardiomyocytes grown on laminin alone or fibronectin alone, Cardiogel-supported cardiomyocytes adhere more rapidly after plating, exhibit spontaneous contractility earlier, undergo cytoskeletal and myofibrillar differentiation earlier, and grow larger than their counterparts. We suggest that their superior growth characteristics reflect the synergistic effect of numerous extracellular matrix components’ signals in Cardiogel transduced by the cardiomyocyte cytoskeletal elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baird, A. A dual receptor system is required for basic fibroblast growth factory activity. Cell 67:229–231; 1991.

    Article  PubMed  Google Scholar 

  • Bashey, R. I.; Donnelly, M.; Insinga, F., et al. Growth properties and biochemical characterization of collagens synthesized by adult rat heart fibroblasts in culture. J. Mol. Cell. Cardiol. 24:691–700; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Baskin, P.; Doctrow, S.; Klagsbrun, M., et al. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743; 1989.

    Article  Google Scholar 

  • Bernfield, M.; Kokenyesi, R.; Kato, M., et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8:365–393; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Borg, T. K.; Rubin, K.; Lundgren, E., et al. Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev. Biol. 104:86–96; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Borg, T. K.; Terracio, L. Interaction of the extracellular matrix with cardiac myocytes during development and disease. In: Robinson, T. F.; Kinne, R. K. H., ed. Cardiac myocyte-connective tissue interactions in health and disease. Issues Biomed. Basel: S. Karger 13; 1990:113–129.

    Google Scholar 

  • Borg, T. K.; Xuehui, M.; Hilenski, L., et al. The role of the extracellular matrix on myofibrillogenesis in vitro. In: Clark, E. B.; Takao, A., ed. Developmental cardiology: morphogenesis and function. Mt. Kisco, NY: Futura; 1990:175–190.

    Google Scholar 

  • Buja, L. M.; Hagler, H. K.; Parsons, D., et al. Alterations of ultrastructure and elemental composition in cultured neonatal rat cardiac myocytes after metabolic inhibition with iodoacetic acid. Lab. Invest. 53:397–412; 1985.

    PubMed  CAS  Google Scholar 

  • Castronovo, V. Laminin receptors and laminin-binding proteins during tumor invasion and metastasis. In: Sordat, B.; Heppner, G. H.; Kobayashi, H., et al., ed. Invasion and metastasis. Karger, Basel; 1993:1–30.

    Google Scholar 

  • Chintala, S. K.; Miller, R. R.; McDevitt, C. A. Basic growth factor binds to heparan sulfate in the extracellular matrix of rat growth plate chondrocytes. Arch. Biochem. Biophys. 310:180–186; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Claycomb, W. C.; Palazzo, M. C. Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscopic study. Dev. Biol. 80:466–482; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Covell, J. W. Functional dynamics of the myocyte-connective tissue unit. In: Robinson, T. F.; Kinne, R. K. H., ed. Cardiac myocyte-connective tissue interactions in health and disease. Basel: S. Karger, 1990:99–112.

    Google Scholar 

  • Damsky, C. H.; Werb, Z. Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Curr. Opin. Cell Biol. 4:772–781; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Eghbali, M.; Czaja, M. J.; Zeydel, M., et al. Collagen chain mRNAs in isolated heart cells from young and adult rats. J. Mol. Cell. Cardiol. 20:267–276; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Eghbali, M.; Blumenfeld, O. O.; Seifter, S., et al. Localization of Types I, III and IV collagen mRNAs in rat heart cells byin situ hybridization. J. Mol. Cell. Cardiol. 21:103–113; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Freshney, R. I. Culture of animal cells. A manual of basic technique. New York: Wiley-Liss; 1994.

    Google Scholar 

  • Gold, E. W. A simple spectrophotometric method for estimating glycosami-noglycan concentrations. Anal. Biochem. 99:183–188; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz, D. Preparation of extracellular matrices produced by cultured bovine corneal endothelial cells and PF-HR-9 endodermal cells: their use in cell culture. In: Barnes, D. W.; Sirbasku, D. A.; Sato, G. H., ed. Methods for preparation of media, supplements and substrates for serum-free animal cell culture. New York: Alan Liss; 1984:275–293.

    Google Scholar 

  • Haddad, J.; Decker, M. L.; Hsieh, L.-C., et al. Attachment and maintenance of adult rabbit cardiac myocytes n primary cell culture. Am J. Physiol. 255:C19-C27; 1988.

    PubMed  CAS  Google Scholar 

  • Hahn, U.; Cho, A.; Schuppan, D., et al. Intestinal epithelial cells preferentially attach to a biomatrix derived from human intestinal mucosa. Gut 28 Suppl. 1:153–158; 1987.

    Article  PubMed  Google Scholar 

  • Harary, I.; Farley, B. In vitro studies of single isolated beating heart cells. Science 131:1674–1675; 1960.

    Article  PubMed  CAS  Google Scholar 

  • Hardingham, T. E.; Fosang, A. J. Proteoglycans: many forms and many functions. FASEB J. 6:861–870; 1992.

    PubMed  CAS  Google Scholar 

  • Herman, I. M. Vascular endothelial cell-synthesized extracellular matrices as attachment substrates in vitro. In: Piper, H. M., ed. Cell culture techniques in heart and vessel research. New York: Springer-Verlag; 1990:205–211.

    Google Scholar 

  • Hilenski, L. L.; Terracio, L.; Borg, T. K. Myofibrillar and cytoskeletal assembly in neonatal rat cardiac myocytes cultured on laminin and collagen. Cell. Tissue Res. 264:577–587; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R. O. Integrins: versatility, modulation and signalling in cell adhesion. Cell 69:11–25; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Iimoto, D. S.; Covell, J. W.; Harper, E. Increase in crosslinking of type I and type III collagens associated with volume overload hypertrophy. Circ. Res. 63:399–408; 1988.

    PubMed  CAS  Google Scholar 

  • Jolles, P., ed. Proteoglycans. Basel: Birkhauser Verlag; 1994.

    Google Scholar 

  • Juliano, R. L.; Haskill, S. Signal transduction from the extracellular matrix. J. Cell Biol. 120:577–585; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Kardami, E. Stimulation and inhibition of cardiac myocyte proliferationin vitro. Mol. Cell. Biochem. 92:129–135; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Ketis, N. V.; Lawler, J.; Bendena, W. G. Extracellular matrix components affect the pattern of protein synthesis of endothelial cells responding to hyperthermia. In Vitro Cell. Dev. Biol. 29A:768–772;1993.

    Article  CAS  Google Scholar 

  • Kjellen, L.; Lindahl, U. Proteoglycans: structures and interactions. Ann. Rev. Biochem. 60:443–475; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; Luckenbill-Edds, L.; Cannon, F. W., et al. Use of extra-cellular matrix components for cell culture. Anal. Biochem. 166:1–13; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; Martin, G. R. U.S. Patent #4,829,000; 1989.

  • Kruk, P. A.; Auersperg, N. A line of rat ovarian surface epithelium provides a continuous source of complex extracellular matrix. In Vitro Cell. Dev. Biol. 30A:217–225; 1994.

    Article  CAS  Google Scholar 

  • Laemmli, U. K. Cleavage of structural proteins during assembly of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C. Q.; Bissell, M. J. Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J. 7:737–743; 1993.

    PubMed  CAS  Google Scholar 

  • Lundgren, E.; Terracio, L.; Mardh, S., et al. Extracellular matrix components influence the survival of adult myocytes in vitro. Exp. Cell Res. 158:371–381; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Mark, G. E.; Strasser, F. F. Pacemaker activity of newborn rat heart ventricle cells. Exp. Cell Res. 44:217–233; 1966.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. R.; Kleinman, H. K. The extracellular matrix in development and disease. Semin. Liver Dis. 5:147–156; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Medugorac, I.; Jacob, R. Characterization of left ventricular collagen in the rat. Cardiovasc. Res. 17:15–21; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Orita, H.; Fukusawa, M.; Hirooka, S., et al. Modulation of cardiac myocyte beating rate and hypertrophy by cardiac fibroblasts isolated from neonatal rat ventricle. Jpn. Circ. J. 57:912–920; 1993.

    PubMed  CAS  Google Scholar 

  • Piper, H. M.; Spahr, R.; Probst, I., et al. Substrates for the attachment of adult myocytes in culture. Basic Res. Cardiol 80 Suppl. 2:175–180; 1985.

    PubMed  Google Scholar 

  • Robinson, T. F.; Factor, S. M.; Capasso, J. M., et al. Morphology, composition and function of struts between cardiac myocytes of rat and hamster. Cell Tissue Res. 249:247–255; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Scott-Burden, T. Extracellular matrix: the cellular environment. News Physiol. Sci. 9:110–115; 1994.

    CAS  Google Scholar 

  • Schanne, O. F.; Bkaily, G. Explanted cardiac cells: a model to study drug actions? Can. J. Physiol. Pharmacol. 59:443–467; 1981.

    PubMed  CAS  Google Scholar 

  • Simpson, D. G.; Terracio, L.; Terracio, M., et al. Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J. Cell. Physiol. 161:89–105; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Terracio, L.; Rubin, K.; Gullberg, D., et al. Expression of collagen binding integrins during cardiac development and hypertrophy. Circ. Res. 68:734–744; 1991.

    PubMed  CAS  Google Scholar 

  • Terracio, L.; Borg, T. K. Immunohistochemical characterization of isolated and cultured cardiac myocytes. In: Clark, W. A.; Decker, R. S.; Borg, T. K., ed. Biology of isolated adult cardiac myocytes. Elsevier, Science Publsihing, Inc., NY; 1988:54–67.

    Google Scholar 

  • Thyberg, J.; Hultgardh-Nilsson, A. Fibronectin and basement membrane components laminin and collagen type IV influence the phenotypic properties of rat aortic smooth muscle cells differently. Cell Tissue Res. 276:267–271; 1994.

    Google Scholar 

  • Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Tremble, P.; Chiquet-Ehrismann, R.; Werb, Z. The extracellular matrix ligands fibronectin and tenascin collaborate in regulating collagenase gene expression in fibroblasts. Mol. Biol. Cell 5:439–453;1994.

    PubMed  CAS  Google Scholar 

  • VanWinkle, W. B.; Snuggs, M.; Biller, J. C., et al. Cytoskeletal alterations in cultured cardiomyocytes following exposure to the lipid peroxidation product, 4-hydroxynonenal. Cell. Motil. Cytoskel. 28:119–134; 1994.

    Article  CAS  Google Scholar 

  • Van Winkle, W. B.; Snuggs, M.; Buja, L. M. Hypoxia-induced alterations in cytoskeleton coincide with collagenase expression in cultured neonatal rat cardiomyocytes. J. Mol. Cell. Cardiol. 1995: in press.

  • Venstrom, K. A.; Reinhardt, L. F. Extracellular matrix 2: role of extracellular matrix molecules and their receptors in the nervous system. FASEB J. 7:995–1003; 1993.

    Google Scholar 

  • Vigny, M.; Ollier-Hartman, M. P.; Lavigne, M., et al. Specific binding of basic fibroblast growth factor to basement membrane-like structures and to purified heparan sulfate proteoglycan of the EHS tumor. J. Cell Physiol. 137:321–328; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Watt, F. The extracellular matrix and cell shape. Trends Biochem. Sci. 11:482–485; 1986.

    Article  CAS  Google Scholar 

  • Weber, K. T.; Sun, Y.; Tyagi, S. C., et al. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J. Mol. Cell. Cardiol. 26:279–292; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Woods, A.; Couchman, J. R. Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol. Biol. Cell. 5:183–192; 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanwinkle, W.B., Snuggs, M.B. & Buja, L.M. Cardiogel: A biosynthetic extracellular matrix for cardiomyocyte culture. In Vitro Cell.Dev.Biol.-Animal 32, 478–485 (1996). https://doi.org/10.1007/BF02723051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723051

Key words

Navigation