Skip to main content
Log in

Generalized mean fields and quasi-particle interactions in the Hubbard model

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The self-consistent theory of the correlation effects in transition metals and their compounds (TMC) and disordered binary alloys has been developed using the Hubbard model and random Hubbard model. In order to obtain the interpolation solution for the quasi-particle spectrum, which is valid for both the atomic and band limits, the novel Irreducible Green’s Function (IGF) method has been used. This method permits to calculate the quasi-particle spectra of many-particle systems with complicated spectra and strong interaction in a very natural and compact way. The essence of the method is deeply related with the notion of the Generalized Mean Fields (GMFs), which determines the elastic-scattering corrections. The inelastic-scattering corrections lead to the damping of the quasi-particles and is the main topic of the present consideration. The calculation of the damping has been done in a self-consistent way for both limits. For the random Hubbard model the weak-coupling case has been considered and the self-energy operator has been calculated using the combination of the IGF method and Coherent Potential Approximation (CPA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fulde:Electron Correlations in Molecules and Solids (Springer, Heidelberg, 1991).

    Book  Google Scholar 

  2. A. L. Kuzemsky:Correlation effects in high T c superconductors and heavy fermion compounds, inProceedings of the International Conference on Superconductivity and Strongly Correlated Electron Systems, Amalfi, October 1993, edited byC. Noce et al. (World Scientific, Singapore, 1994).

    Google Scholar 

  3. A. L. Kuzemsky:Dokl. Acad. Nauk SSSR,309, 323 (1989).

    Google Scholar 

  4. A. L. Kuzemsky: inProceedings of the V International Symposium on Selected Topics in Statistical Mechanics (World Scientific, Singapore, 1990), p. 157.

    Google Scholar 

  5. P. W. Anderson:Phys. Rev.,124, 41 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  6. F. D. M. Haldane:J. Phys. C,11, 5015 (1978).

    Article  ADS  Google Scholar 

  7. J. Hubbard:Proc. R. Soc. London, Ser A,276, 238 (1963).

    Article  ADS  Google Scholar 

  8. J. Kanamori:Prog. Theor. Phys.,30, 275 (1963).

    Article  ADS  Google Scholar 

  9. A. L. Kuzemsky:Theor. Math. Phys.,36, 208 (1978).

    Google Scholar 

  10. S. V. Tyablicov:Methods of Quantum Theory of Magnetism (Plenum Press, New York, N.Y., 1967).

    Book  Google Scholar 

  11. D. N. Zubarev:Ups. Fiz. Nauk,71, 71 (1960).

    Article  MathSciNet  Google Scholar 

  12. D. Forster:Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (Benjamin, Reading, Mass., 1975).

    Google Scholar 

  13. J. Hubbard:Proc. R. Soc. London, Ser. A,281, 401 (1964).

    Article  ADS  Google Scholar 

  14. J. L. Beeby:Phys. Rev. A,135, 130 (1964).

    Article  ADS  Google Scholar 

  15. L. M. Roth:Phys. Rev.,184, 451 (1969);186, 428 (1969).

    Article  ADS  Google Scholar 

  16. A. Svane andO. Gunnarsson:Phys. Rev. Lett.,65, 1148 (1990).

    Article  ADS  Google Scholar 

  17. Y. Ishii andK. Terakura:Phys. Rev. B,42, 10924 (1990).

    Article  ADS  Google Scholar 

  18. N. N. Bogoljubov sr. andN. N. Bogoljubov jr.:Introduction to Quantum Statistical Mechanics (World Scientific, Singapore, 1982).

    Book  Google Scholar 

  19. J. M. Halley andP. Erdos:Phys. Rev. B,5, 1106 (1972).

    Article  ADS  Google Scholar 

  20. G. D. Mahan:The Many-Particle Physics (Plenum Press, New York, N.Y., 1990).

    Book  Google Scholar 

  21. A. L. Kuzemsky: inProceedings of the International Conference on Physics of Transition Metals, edited byV. G. Bar'yakhtar, Part 2 (Naukova Dumka, Kiev, 1989), p. 69.

    Google Scholar 

  22. M. P. Lopez Sancho et al.:Phys. Rev. B,46, 11110 (1992).

    Article  ADS  Google Scholar 

  23. A. L. Kuzemsky andR. Tarnko: Communication JINR, E17-86-34, Dubna (1986).

  24. R. Kishore andS. K. Joshi:J. Phys. C, 4, 2475 (1971).

    Article  ADS  Google Scholar 

  25. S. Massida, M. Posternak andA. Baldereschi:Phys. Rev. B,48, 5058 (1993).

    Article  ADS  Google Scholar 

  26. M. Gaudin:Nucl. Phys.,15, 89 (1960).

    Article  MathSciNet  Google Scholar 

  27. B. Westwanski andA. Pawlikowski:Phys. Lett. A,43, 201 (1973).

    Article  ADS  Google Scholar 

  28. V. Chari andA. Pressley:J. Reine Angew. Math.,417, 87 (1991).

    MathSciNet  Google Scholar 

  29. F. D. M. Haldane, Z. N. C. Ha, J. C. Talstra, D. Bernard andV. Pasquer:Phys. Rev. Lett.,69, 2021 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  30. V. Inozemtsev andA. L. Kuzemsky:Phys. Rev. B,43, 1090 (1991).

    Article  ADS  Google Scholar 

  31. H. Matsumoto andH. Umezawa:Phys. Rev. B,31, 4433 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  32. H. Matsumoto, M. Sasaki, S. Ishihara andM. Tachiki:Phys. Rev. B,46, 3009 (1992).

    Article  ADS  Google Scholar 

  33. M. Sasaki, H. Matsumoto andM. Tachiki:Phys. Rev. B,46, 3022 (1922).

    Article  ADS  Google Scholar 

  34. F. Mancini, M. Marinaro, Y. Nakano, C. Noce andA. Romano:Nuovo Cimento D,11, 1709 (1989).

    Article  ADS  Google Scholar 

  35. D. G. Clarke:Phys. Rev. B,48, 7520 (1993).

    Article  ADS  Google Scholar 

  36. J. J. Lin andC. Y. Wu:Phys. Rev. B,48, 5021 (1993).

    Article  ADS  Google Scholar 

  37. G. Baumgartel, J. Schmalian andK. H. Bennemann:Phys. Rev. B,48, 3983 (1993).

    Article  ADS  Google Scholar 

  38. P. Soven:Phys. Rev. B,2, 4715 (1970).

    Article  ADS  Google Scholar 

  39. P. N. Argyres:J. Phys. F,12, 2851, 2861 (1982).

    Article  ADS  Google Scholar 

  40. A. Zin andE. A. Stern:Phys. Rev. B,31, 4954 (1985).

    Article  ADS  Google Scholar 

  41. A. Datta, P. Thakur andA. Mookerjee:Phys. Rev. B,48, 8567 (1993).

    Article  ADS  Google Scholar 

  42. G. Abito andJ. Schweitzer:Phys. Rev. B,11, 37 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzemsky, A.L. Generalized mean fields and quasi-particle interactions in the Hubbard model. Nuov Cim B 109, 829–854 (1994). https://doi.org/10.1007/BF02722462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02722462

PACS 05.30

PACS 05.30.Fk

PACS 11.15.Tk

PACS 71.10

PACS 71.20.Ad

Navigation