Skip to main content
Log in

Quantum mechanics as a nonergodic classical statistical theory

Квантовая механика как неэргодическая классическая статистическая теория

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

Another interpretation of ψ, the quantum-mechanical wave function, is presented. The nonergodic statistical interpretation is a statistical interpretation, and differs from the statistical interpretation presented by Ballentine only in its ergodic properties (that is in its predictions for time and ensemble averages). The conceptual advantages and disadvantages of this interpretation are analysed from the viewpoint of local hidden-variable theories. The advantages are the following. The nonergodic statistical interpretation is consistent with the local hidden-variable theories that agree with quantum mechanics in the polarization correlation experiments. A corollary of this result is that the statistical interpretation is not neutral to the question of the existence of local hidden-variable theories but is inconsistent with such theories. In this interpretation there is no joint-probability distribution problem as in the statistical interpretation. This interpretation opens up local hidden-variable explanations of interference effects hitherto not considered. This interpretation has the seemingly contradictory properties that it always agrees with the numerical predictions of quantum mechanics and yet is experimentally distinguishable from both the statistical and Copenhagen interpretations. The disadvantages are that this view depends physically on assigning certain radical properties to space. Mainly, the local hidden-variable theories which motivate this view must presuppose the existence of a field or medium with stable states or memory in empty space.

Riassunto

Si presenta un’altra interpretazione di ψ, la funzione d’onda quantomeccanica. L’interpretazione statistica non ergodica è una interpretazione statistica e differisce dall’interpretazione statistica presentata da Ballentine solo nelle sue proprietà ergodiche (cioè nelle sue previsioni sulle medie di tempo e di insieme). I vantaggi concettuali e gli svantaggi di questa interpretazione sono analizzati dal punto di vista delle teorie locali delle variabili nascoste. Gli svantaggi sono i seguenti. L’interpretazione statistica non ergodica è coerente con le teorie locali delle variabili nascoste che sono in accordo con la meccanica quantistica sugli esperimenti di correlazione della polarizzazione. Un corollario di questo risultato è che l’interpretazione statistica non è neutrale rispetto alla questione dell’esistenza di teorie locali delle variabili nascoste, ma è incoerente con tali teorie. In questa interpretazione non c’è il problema della distribuzione di probabilità congiunte come nell’interpretazione statistica. Questa interpretazione apre la strada a spiegazioni secondo le variabili nascoste locali di effetti di interferenza fino ad ora non considerati. Questa interpretazione ha le proprietà apparentemente contraddittorie che è sempre in accordo con le previsioni numeriche della meccanica quantistica e tuttavia è distinguibile sperimentalmente sia dall’interpretazione statistica che da quella di Copenhagen. Gli svantaggi sono che questo punto di vista dipende fisicamente dall’assegnazione di certe proprietà radicali allo spazio. Principalmente, le teorie locali delle variabili nascoste che motivano questo punto di vista devono presupporre l’esistenza di un campo o di un mezzo con stati stabili o memoria nello spazio vuoto.

Резюме

Предлагается новая интерпретация квантовомеханической волновой функции. Предложенная неэргодическая статистическая интерпретация является статистической интерпретацией, но отличается от статистической интерпретации, предложенной Баллентином, эргодических свойств (т.е. предсказаний для средних по ансамблю и времени). Анализируются концептуальные преимущества и недостатки этой интерпретации с точки зрения теории локальных скрытых переменных. Преимущества предложенной интерпретации следующие. Неэргодическая статистическая интерпретация согласуется с теориями локальных скрытых переменных, которые согласуются с квантовой механикой при описании поляризационных корреляционных экспериментов. Следствие этого результата состоит в том, что статистическая интерпретация не является нейтральной к вопросу существования теорий локальных скрытых переменных, но не согласуется с такими теориями. В этой интерпретации отсутствует проблема совместного распределения вероятности, как в статистической интерпретации. Эта интерпретация позволяет объяснить интерференционные эффекты с точки зрения теории локальных скрытых переменных. Предложенная интерпретация обладает противоречивыми свойствами, она всегда согласуется с численными предсказаниями квантовой механики, но предложенная интерпретация экспериментально отличается и от статистической и от Копентагенской интерпретаций. Недостатки этой интерпретации состоят в том, что она физически зависит от задания некоторых радикальных свойств пространства. Теории локальных скрытых переменных, которые обосновывают эту точку зрения, должны предполагать существование поля или среды со стабильными состояниями или память в пустом пространстве.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Ballentine:Rev. Mod. Phys.,42, 358 (1970).

    Article  ADS  Google Scholar 

  2. M. Jammer:The Philosophy of Quantum Mechanics (New York, N. Y., 1974).

  3. In quantum mechanics one would say reprepare, while in hidden variable theories one would say randomize over the uncontrolled variables.

  4. This definition is weaker than the definition used in stochastic processes. We do not use the latter definition only because it would require us to define several additional terms not necessary to this article.

  5. J. S. Bell:Physics,1, 195 (1964).

    MATH  Google Scholar 

  6. A. Einstein, B. Poldolsky andN. Rosen:Phys. Rev.,47, 777 (1935).

    Article  ADS  MATH  Google Scholar 

  7. D. Bohm andY. Aharonov:Phys. Rev.,108, 1070 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  8. S. J. Freedman andJ. F. Clauser:Phys. Rev. Lett.,28, 938 (1972).

    Article  ADS  MATH  Google Scholar 

  9. G. Faraci, D. Gutkowski, S. Notarrigo andA. R. Pennisi:Angular correlation of scattered annihilation photons, to test the possibility of hidden variables in quantum theory, preprint, Istituti di Fisica dell’Università, Catania, PP/394

  10. R. A. Holt andF. M. Pipkin:Quantum mechanics vs. hidden variables: polarization correlation measurement on an atomic mercury cascade, preprint, Physics Department, University of Southern Ontario, Canada (R. A. Holt).

  11. M. Lamehi-Rachti andW. Mittig:Quantum mechanics and hidden variables: a test of Bell’s inequality by the measurement of the spin correlation in low-energy proton-proton scattering, preprint, Instituto de Física, Universidade de São Paulo, São Paulo, Brasil (W. Mittig).

  12. J. F. Clauser:Phys. Rev. Lett.,36, 1223 (1976).

    Article  ADS  Google Scholar 

  13. E. S. Fry andR. C. Thompson:Phys. Rev. Lett.,37, 465 (1976).

    Article  ADS  Google Scholar 

  14. M. Bruno, M. D’Agostino andC. Maroni:Nuovo Cimento B,40, 143 (1977).

    Article  ADS  Google Scholar 

  15. A. R. Wilson, J. Lowe andD. K. Butt:J. Phys. G,2, 613 (1976).

    Article  ADS  Google Scholar 

  16. It is well known that Bell’s inequality does not characterize certain local h.v.t. These are theories in which the distant measuring apparata communicate with each other directly at some finite velocity and consequently each knows the other’s state. In the existing experiments there is plenty of time for the apparatus to do this without violating locality. Since such theories are experimentally testable (by randomly changing the apparatus parameters between measurements to eliminate any communication at a finite velocity) and usually considered physically unattractive, they are frequently excluded from discussion. This will be the case here also. Note that (17) plans to test such theories.

    Article  ADS  Google Scholar 

  17. A. Aspect:Phys. Rev. D,14, 1944 (1976).

    Article  ADS  Google Scholar 

  18. V. Buonomano:Ann. Inst. Henri Poincaré Sect. A,29, 379 (1978).

    MathSciNet  Google Scholar 

  19. By agreement with quantum mechanics it is meant that for grand time averages the nonergodic local h.v.t. agree with the numerical values predicted by quantum mechanics for ensemble averages. Of course, for true ensemble averages these local h.v.t. must disagree completely with quantum mechanics.

  20. L. Cohen:Philos. Sci.,33, 317 (1966).

    Article  Google Scholar 

  21. V. Buonomano:Nuovo Cimento B,45, 77 (1978).

    Article  ADS  Google Scholar 

  22. In that article there was little need to make a distinction between local and nonlocal h.v.t. One can imagine both ergodic and nonergodic hidden-variable theories which are either local or not. Therefore, it is justifiable to refer to the results as existing for local h.v.t. even thought this was not explicitly done in the article.

  23. It is our opinion that Lande’s view fails completely to account for this interference experiment since there is nothing to account for Duane’s discrete momentum changes.

  24. G. C. Ghirardi, C. Omero, A. Rimini andT. Weber:Riv. Nuovo Cimento,1, No. 3 (1978).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buonomano, V. Quantum mechanics as a nonergodic classical statistical theory. Nuov Cim B 57, 146–170 (1980). https://doi.org/10.1007/BF02722407

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02722407

Navigation