Skip to main content
Log in

Drift instability of electron-phonon systems

Дрейфовая неустойчивость электрон-фононных систем

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

It is shown that, by using a simple quantum dielectric approach, it is possible to study in a unified way the amplification of both acoustic and optical phonons in electron-phonon systems by effect of electrons drifting against the lattice. As to the electron-phonon systems, such cases of couplings are considered to cover large classes of semiconductors, semimetals and metals, namely: 1) piezoelectric coupling, 2) deformation potential coupling, 3) polar-scattering coupling, 4) purely electromagnetic coupling. Whenever useful, the explicit dependence of the quantities of interest upon the electron-phonon coupling is given. The metals are also considered to gain some model information on the possible effect of the lattice periodicity on the threshold drift velocity. The basic dispersion relation of our treatment is solved also in the high-frequency limit, where, however, no amplification is expected. In this limit at least two interesting features of an electron-phonon system deserve to be remarked: 1) the effect of the electron-phonon coupling is found to subtract from the lower solution of the dispersion relation (phonon mode) the same amount which is added to the upper solution (plasmon mode), hence resulting in a «repulsion» of the modes; 2) the spectrum of the high-frequency oscillations may result to be anisotropic with respect to the direction of the electronic drift to such an extent as to make this effect observable.

Riassunto

Nel presente lavoro si mostra che è possibile studiare in maniera unificata, usando un semplice approccio dielettrico quantistico, l'amplificazione sia dei fononi acustici che di quelli ottici in sistemi di elettroni e fononi per effetto di deriva degli elettroni rispetto al reticolo. Per quanto concerne i sistemi elettrone-fonone, sono presi in considerazione quei tipi di accoppiamento che permettono di coprire larghe classi di semiconduttori, semimetalli e metalli e cioè: 1) accoppiamento piezoelettrico, 2) accoppiamento dovuto al potenziale di deformazione, 3) accoppiamento dovuto a scattering polare, 4) accoppiamento elettromagnetico puro. Dovunque è ritenuto utile, si dà la dipendenza esplicita delle grandezze d'interesse dall'accoppiamento elettrone-fonone. Sono presi in considerazione anche i metalli al fine di ottenere informazioni sul possibile effetto della periodicità del reticolo sulla soglia della velocità di deriva. La relazione di dispersione, che costituisce la base del nostro trattamento, viene risolta anche nel limite delle alte frequenze, dove tuttavia non ci si aspetta amplificazione di modi collettivi. In questo limite, meritano di essere sottolineati almeno due tratti interessanti di un sistema elettrone-fonone: 1) l'effetto dell'accoppiamento elettrone-fonone si risolve in una sottrazione dalla soluzione più bassa della relazione di dispersione (modo fononico) della stessa quantità, che viene aggiunta alla soluzione più alta (modo plasmonico), dando luogo, quindi, ad una «repulsione» fra i modi; 2) lo spettro delle oscillazioni di alta frequenza può risultare tanto anisotropico rispetto alla direzione della deriva elettronica da rendere osservabile questo effetto.

Резюме

Показывается, что, используя простой квантовый диэлектрический подход, можно исследовать единым образом усиление и акустических и оптических фононов в электрон-фононной системе, за счет влияния электронов, дрейфующих относительно решетки. Что касается электрон-фононных систем, то рассматриваются такие случаи связей, которые охватывают большие классы полупроводников, полуметаллов и металлов, а именно: 1) пьезоэлектрическая связь, 2) связь деформированного потенциала, 3) связь полярного рассеяния, 4) чисто электромагнитная связь. Приводится явная зависимость интересующих величин от электрон-фононной связи. Также рассматриваются металлы, чтобы получить некоторую модельную информацию о возможном влиянии периодичности решетки на пороговую дрейфовую скорость. В высокочастотном пределе решается основное дисперсионное соотношение нашего подхода, когда, однако, усиления не ожидается. В этом пределе следует отметить, по крайней мере, две интересных особенности электрон-фононной системы: 1) обнаружено, что влияние электрон-фононной связи вычитает из нижнего решения дисперсионного соотношения (фононная мода) определенную величину, которая добавляется к верхнему решению (плазмонная мода), что приводит к «отталкиванию» мод; 2) спектр высокочастотных осцилляций может стать до такой степени анизотропным относительно направления электронного дрейфа, что делает этот эффект наблюдаемым.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Hutson, J. H. McFee andD. L. White:Phys. Rev. Lett.,7, 237 (1961).

    Article  ADS  Google Scholar 

  2. The possibility of generation and amplification of ultra-sonic waves in a crystal by electron-phonon interaction, when the carrier drift velocity in the external field exceeds the velocity of sound was predicted theoretically in 1956 byK. B. Tolpygo andZ. I. Uritskii:Žurn. Ėksp. Teor. Fiz.,30, 929 (1956) (English translation:Sov. Phys. JETP,3, 725 (1956)) andG. Weinreich:Phys. Rev.,104, 321 (1956).

    Google Scholar 

  3. For early references and reviews of the current status of the experimental and theoretical work concerning this subject, see:a)H. N. Spector:Solid State Phys.,19, 291 (1966);b)E. M. Conwell:High Field Transport in Semiconductors (new York, 1967);c)K. Yamada:Phys. Rev.,169, 690 (1968), and references quoted therein;d)P. K. Tien:Phys. Rev.,171, 970 (1968), and references quoted therein.

    Google Scholar 

  4. See for instanceSpector, ref. (3a).

    Google Scholar 

  5. a)H. N. Spector:Phys. Rev.,127, 1084 (1962);130, 910 (1963);131, 2512 (1963);134, A 507 (1964);137, A 311 (1965);165, 562 (1968);b)I. Yokota:Phys. Lett.,10, 27 (1964);c)E. M. Epshtein:Fiz. Tverd. Tela,7, 862 (1965) (English translation:Sov. Phys. Solid State,7, 688 (1965));d)J. Yamashita andK. Nakamura:Prog. Theor. Phys.,33, 1022 (1965);e)Y. C. Lee andN. Tzoar:Phys. Rev.,140, A 396 (1965);f)B. Bertotti, G. Ferrante andR. Geracitano: Tech. Report No. 1., Istituto di Fisica di Messina, 1969 (unpublished).

    Article  ADS  Google Scholar 

  6. In practice, the way to achieve any finite drift velocity is through the conjunction of an external electric field and an external scattering mechanism which provides a relaxation time associated with the drift of the particles and keeping it constant. Using a constant drift velocity in our problem, we are assuming that this takes place. Sometimes the direct effect of the external field needs to be taken into account (D. Pines andJ. R. Schrieffer:Phys. Rev.,124, 1387 (1961);H. N. Spector:Phys. Rev.,165, 562 (1968)). Further, mechanisms, other than the use of external electric field, may be thought to produce a drift velocity.

    Article  ADS  MathSciNet  Google Scholar 

  7. See, for details,Spector, ref. (3a) ;C. Caccamo: Graduation Thesis, University of Messina, 1969 (unpublished). Other electron-phonon couplings, such as the magnetoelastic coupling (M. H. Cohen, M. J. Harrison andW. A. Harrison:Phys. Rev.,117, 937 (1960)) or the external-field-dependent coupling (S. I. Pekar:Žurn. Ėksp. Teor. Fiz.,49, 621 (1965), English translation:Sov. Phys. JETP,22, 431 (1966)) are important only in specific situations and will not concern us here.

    Google Scholar 

  8. The interested reader is referred to ref. (3a).

    Google Scholar 

  9. D. Pines:Elementary Excitations in Solids, Chap. IV (New York, 1964), p. 180.

  10. D. Pines:Elementary Excitations in Solids, Chap. V (New York, 1964).

  11. However, it must be remarked that in the case of polar semiconductors the modes are an admixture of ionic and electronic motion, and a considerable amount of the latter may be present in what we have called phonon mode.

  12. Y. C. Lee andN. Tzoar:Phys. Rev.,140, A 396 (1965). The expression for the electron-phonon coupling-strength parameter α of these authors contains a misprint.

    Article  ADS  Google Scholar 

  13. For greater details, seeSpector, ref. (3a), and works quoted therein.

    Google Scholar 

  14. N. Tzoar:Phys. Rev.,164, 518 (1967).

    Article  ADS  Google Scholar 

  15. H. N. Spector:Phys. Rev.,137, A 311 (1965).

    Article  ADS  Google Scholar 

  16. M. Glicksman andW. A. Hicinbothem jr.:Phys. Rev.,129, 1572 (1963).

    Article  ADS  Google Scholar 

  17. See, for more details,C, Caccamo andG. Ferrante: Techn. Report No. 6, Istituto di Fisica di Messina, 1969 (unpublished).

  18. J. Bardeen:Phys. Rev.,52, 688 (1937);J. Bardeen andD. Pines:Phys. Rev.,99, 1140 (1955), Appendix A.

    Article  ADS  Google Scholar 

  19. J. Bardeen, L. N. Cooper andJ. R. Schrieffer:Phys. Rev.,108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Bardeen andJ. R. Schrieffer:Progr. Low. Temp. Phys.,3, 170 (1961).

    Article  MathSciNet  Google Scholar 

  21. See, for example,A. A. Vedenov, E. P. Velikhov andR. Z. Sagdeev:Usp. Fiz. Nauk,73, 701 (1961) (English translation:Sov. Phys. Uspekhi,4, 332 (1961)).

    Article  Google Scholar 

  22. B. B. Varga:Phys. Rev.,137, A 1896 (1965).

    Article  ADS  Google Scholar 

  23. K. S. Singwi andM. P. Tosi:Phys. Rev.,147, 658 (1966).

    Article  ADS  Google Scholar 

  24. M. J. Harrison:Journ. Phys. Chem. Solids,23, 1079 (1962).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Taken in part from the thesis submitted byC. Caccamo to the University of Messina for graduation in Physics.

Перевебено ребакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caccamo, C., Ferrante, G. Drift instability of electron-phonon systems. Nuov Cim B 2, 93–106 (1971). https://doi.org/10.1007/BF02722235

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02722235

Navigation