Skip to main content
Log in

On the gradient method in quantum mechanics

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

We present the gradient method as a numerical procedure for the discrete spectrum of Hamiltonian operators in a version which is more general and has better numerical flexibility than a previous version. We show that the gradient method, in addition to have relationships to the Rayleigh-Schrödinger perturbation theory and to the variational method, has also some advantageous features in comparison with them and even in comparison with the Padé and Borel summability methods. In order to check the numerical efficiency of our procedure, we have applied it, with encouraging results, to the calculation of the ground-state energy of the anharmonic oscillatorsp 2 +x 2 +βx 4 andp 2 +x 2 +βx 8 for a large range of β.

Riassunto

Si presenta il metodo del gradiente come procedimento numerico per lo spettro discreto di operatori hamiltoniani in una versione che è piú generale ed ha una migliore flessibilità numerica di una precedente versione. Si mostra che il metodo del gradiente, oltre ad avere connessioni con la teoria perturbativa di Rayleigh-Schrödinger e col metodo variazionale, ha anche vantaggi su questi e perfino sui metodi di sommabilità di Padé e Borel. Al fine di provare l’efficienza numerica del procedimento, questo è stato applicato, con risultati incoraggianti, al calcolo dell’energia dello stato fondamentale degli oscillatori anarmonicip 2 +x 2 +βx 4 ep 2 +x 2+βx8 per un largo intervallo di β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Kantorovich andG. P. Akilov:Functional Analysis in Normed Spaces (Oxford, 1964).

  2. M. Z. Nashed:J. Math. Mech.,14, 765 (1964);E. S. Levitin andB. T. Polyak:Ž. Vychisl. Mat. Mat. Fiz.,6, 787 (1966);B. T. Polyak:Ž. Vchyisl. Mat. Mat. Fiz.,9, 4, 807 (1969);H. Tokumaru, N. Adachi andK. Goto:SIAM J. Control,8, 163 (1970);V. M. Safro:USSR Comp. Math. Math. Phys.,2, 212 (1976);B. Pchénitchny andY. Daniline:Méthodes numeriques dans les probléms d'extrémum (Moscou, 1977).

    MathSciNet  Google Scholar 

  3. R. McWeeny:Proc. R. Soc. London Ser. A,235, 496 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Polezzo:Theor. Chim. Acta,38, 211 (1975);B. T. Sutcliffe:Theor. Chim. Acta,39, 93 (1975).

    Article  MathSciNet  Google Scholar 

  5. M. Di Toro, G. Russo andF. Duggan:Phys. Rev. C,21, 2054 (1980);P. Ring andP. Shuck:The Many-Body Problem (New York, N. Y., 1980);P. G. Reinhard andR. Y. Cusson:Nucl. Phys. A,378, 418 (1982).

    Article  ADS  Google Scholar 

  6. G. Fonte: preprint, Catania University.

  7. G. Fonte andG. Schiffrer:Nuovo Cimento B,37, 63 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Fonte:Nuovo Cimento B,49, 200 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Fonte:J. Math. Phys. (N. Y.),21, 800 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M. Reed andB. Simon:Methods of Modern Mathematical Physics, Vol. IV:Analysis of Operators (New York, N. Y., 1978).

  11. T. Kato:Perturbation Theory of Linear Operators (Berlin, 1966).

  12. C. S. Sharma:Phys. Rep. C,26, 1 (1976).

    Article  ADS  MATH  Google Scholar 

  13. M. Reed andB. Simon:Methods of Modern Mathematical Physics, Vol. II:Fourier Analysis, Self-adjointness (New York, N. Y., 1975).

  14. F. H. Stillinger:J. Chem. Phys.,45, 3623 (1966);F. H. Stillinger andD. K. Stillinger:Phys. Rev. A,10, 1109 (1974).

    Article  ADS  Google Scholar 

  15. J. J. Loeffel, A. Martin, B. Simon andA. Wightman:Phys. Lett. B,30, 656 (1969).

    Article  ADS  MATH  Google Scholar 

  16. S. Graffi, V. Grecchi andG. Turchetti:Nuovo Cimento B,4, 313 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Graffi, V. Grecchi andB. Simon:Phys. Lett. B,32, 631 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  18. B. Simon:Int. J. Quant. Chem.,21, 3 (1982).

    Article  Google Scholar 

  19. W. E. Caswell:Ann. Phys.(N. Y.),123, 153 (1979).

    Article  ADS  Google Scholar 

  20. J. Killinbeck:Rep. Prog. Phys.,40, 963 (1977).

    Article  ADS  Google Scholar 

  21. B. Simon:Ann. Phys. (N. Y.),58, 76 (1970).

    Article  ADS  Google Scholar 

  22. N. Bazley andD. Fox:Phys. Rev.,124, 483 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. S. Graffi andV. Grecchi:Phys. Rev. D,8, 3487 (1973).

    Article  ADS  Google Scholar 

  24. B. Klahn andA. W. Bingel:Theor. Chim. Acta,44, 9, 27 (1977).

    Article  MathSciNet  Google Scholar 

  25. E. W. Cheney:Introduction to Approximation Theory (New York, N. Y., 1966).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by Istituto Nazionale di Fisica Nucleare, Sezione di Catania, and, partially, by C.N.R. (Ferrara University contributions 79.01834.02, 81.02856.02) and by the U.S. National Science Foundation grant PHY-8116101.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonte, G., Schiffrer, G. On the gradient method in quantum mechanics. Nuov Cim B 74, 1–26 (1983). https://doi.org/10.1007/BF02721681

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02721681

PACS. 03.65

Navigation