Il Nuovo Cimento A (1965-1970)

, Volume 48, Issue 4, pp 997–1007 | Cite as

A reinterpretation of the notion of localization

  • A. J. Kálnay
  • B. P. Toledo


Several reasons suggest that the difficulties to obtain the position operator in relativistic quantum mechanics are caused by the hypothesis that the measurable values of a component of the position are real numbers instead of regions of space of the order of a Compton wave length. We show how to develop the idea by using nonnormal operators and prove that this is consistent with reasonable requirements of position. The use of non-Hermitian and nonnormal operators in quantum mechanics is discussed.

Новая интерпретация понятия локализации


Высказываются некоторые аргументы, что трудности, связанные с получением оператора положения в релятивистской квантовой механике, обусловлены гипотезой, что измеряемые значания компоненты радиуса-вектора представляют вещественные числа, а не области пространства, порядка Комптоновскои длины волны. Мы показываем, чак развить эту идею, используя ненормальные операторы, и докаываем, что это согласуется с разумными требованиями положения. Обсуждается использование неэрмитовских и ненормальных операторов в квантовой механике.


Molti motivi suggeriscono che le difficoltà nell’ottenere gli operatori di posizione in meccanica quantistica relativistica sono causate dall’ipotesi che i valori misurabili di una componente della posizione siano numeri reali invece che regioni dello spazio dell’ordine della lunghezza d’onda Compton. Si mostra come sviluppare quest’idea usando operatori non normali e si dimostra che ciò è compatibile con ragionevoli esigenze di posizione. Si discute l’uso di operatori non hermitiani e non normali in meccanica quantistica.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    See for example,L. L. Foldy andS. A. Wouthuysen:Phys. Rev.,78, 29 (1950);H. Bacry:Journ. Math. Phys.,5, 109 (1964);M. Bunge:Nuovo Cimento,1, 977 (1955);P. Beckman:Nuovo Cimento,27, 868 (1963);R. A. Berg:Journ. Math. Phys.,6, 34 (1965);K. Bardakci andR. Acharya:Nuovo Cimento,21, 802 (1961);T. F. Jordan andN. Mukunda:Phys. Rev.,132, 1842 (1963); see also ref. (2,3),T. D. Newton andE. P. Wigner:Rev. Mod. Phys.,21 400 (1949),M. H. L. Pryce:Proc Roy. Soc., A195, 62 (1948).ADSCrossRefGoogle Scholar
  2. (2).
    T. D. Newton andE. P. Wigner:Rev. Mod. Phys.,21, 400 (1949).ADSCrossRefGoogle Scholar
  3. (3).
    M. H. L. Pryce:Proc Roy. Soc., A195, 62 (1948).ADSMathSciNetCrossRefGoogle Scholar
  4. (4).
    It is not Lorentz-invariant in its usual form, but there exists a reformulation of the problem which is Lorentz-invariant, cf.G. N. Fleming:Phys. Rev.,137, B 188 (1965).ADSMathSciNetCrossRefGoogle Scholar
  5. (5).
    T. O. Philips:Phys. Rev.,136, B 893 (1964).ADSMathSciNetCrossRefGoogle Scholar
  6. (6).
    For simplicity we say that position is point-type even if it has noncommuting components, though in this case there is no common eigenstate corresponding to a point of 3-dimensional space.Google Scholar
  7. (7).
    J. A. Gallardo, A. J. Kálnay, B. A. Stec andB. P. Toledo:Nuovo Cimento, to be published.Google Scholar
  8. (8).
    C. Møller: Communication from Dublin Institute for Advance Studies A No. 5, 1949 (unpublished).Google Scholar
  9. (9).
    J. A. Gallardo, A. J. Kálnay, B. A. Stec andB. P. Toledo:Nuovo Cimento,48 A, 1008 (1967).ADSCrossRefGoogle Scholar
  10. (10).
    Notice the difference with Wightman’s localization in a region. Cf. ref. (11).ADSMathSciNetCrossRefGoogle Scholar
  11. (11).
    A. S. Wightman:Rev. Mod. Phys.,34, 845 (1962).ADSMathSciNetCrossRefGoogle Scholar
  12. (12).
    This Section is self-contained. More details will be published elsewhere in the future.Google Scholar
  13. (13).
    P. A. M. Dirac:The Principles of Quantum Mechanics (Oxford, 1947), p. 34.Google Scholar
  14. (14).
    E. C. Kemble:The Fundamental Principles of Quantum Mechanics (New York, 1958), p. 249.Google Scholar
  15. (15).
    H. Margenau:The Nature of Physical Reality (New York, 1950), p. 108.Google Scholar
  16. (16).
    W. E. Thirring:Principles of Quantum Electrodynamics (New York, 1958), p. 112.Google Scholar

Copyright information

© Società Italiana di Fisica 1967

Authors and Affiliations

  • A. J. Kálnay
    • 1
  • B. P. Toledo
    • 1
  1. 1.IMAFUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations