Skip to main content
Log in

Irreversibility in chaotic region of a conservative nonlinear system with a few degrees of freedom

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The motion of the dynamical system of two pendula coupled with each other («double-pendulum model») is investigated in the vicinity of a separatrix by using the Liouville equation. The irreversible kinetic equation of the Fokker-Planck type for the momentum distribution function is obtained in the «weak-coupling» limit. It is shown that the system monotonically approaches the «microcanonical» equilibrium state and further the diffusion coefficient for this process is related to that obtained by Chirikov’s heuristic argument.

Riassunto

Si studia il movimento del sistema dinamico di due pendoli accoppiati l’uno con l’altro («modello a doppio pendolo») in vicinanza di una separatrice usando l’equazione di Liouville. L’equazione cinetica irreversibile del tipo di Fokker-Planck per la funzione di distribuzione dell’impulso è ottenuta nel limite di «accoppiamento debole». Si mostra che il sistema si avvicina monotonicamente allo stato di equilibrio «microcanonico» ed inoltre il coefficiente di diffusione per questo processo è in relazione con quello ottenuto dall’argomanto euristico di Chirikov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Boltzmann:Wien. Ber.,66, 275 (1872).

    MATH  Google Scholar 

  2. L. Van Hove:Physica,21, 517 (1955);23, 441 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Prigogine andR. Balescu:Physica,25, 281, 302 (1959);26, 145 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. I. Prigogine:Nonequilibrium Statistical Mechanics (New York, N. Y., 1962).

  5. R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (New York, N. Y., 1975).

  6. P. Resibois:Physics of Many-Particle Systems, edited byE. Meeron (New York, N. Y., 1966).

  7. A. N. Kolmogorov:Dokl. Akad. Nauk,98, 527 (1954).

    MathSciNet  Google Scholar 

  8. V. I. Arnol’d:Usp. Mat. Nauk,18, 9 (1963).

    MATH  Google Scholar 

  9. J. Moser:Nach. Akad. Wiss. Göttingen Math. Phys., Kl. 2,4, 1 (1962).

    Google Scholar 

  10. M. Henon andC. Heiles:Astron. J.,69, 73 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Ford:Lectures in Statistical Physics, edited byW. C. Shieve andJ. S. Turner (Berlin, 1974).

  12. T. Y. Petrosky:Phys. Rev. A,29, 2078 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  13. G. M. Zaslavsky:Chaos in Dynamical Systems (Chur, 1985);G. M. Zaslavsky andR. Z. Sagdeev:Sov. Phys. JETP,25, 718 (1967).

  14. B. V. Chirikov:Phys. Rep.,52, 263 (1979).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, M., Azumai, K., Petrosky, T.Y. et al. Irreversibility in chaotic region of a conservative nonlinear system with a few degrees of freedom. Nuov Cim B 94, 37–53 (1986). https://doi.org/10.1007/BF02721576

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02721576

PACS

Navigation