Skip to main content
Log in

On the accuracy of experimental electron energy distributions in gases

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

Monte Carlo simulations have been used to assess the accuracy of the retarding-field method used to unfold experimental electron energy distributions. It is shown that electron reflection at the electrode and extrapolation to zero energy of experimental data can explain, at least in part, the observed agreement between experimental and calculated energy distributions. Reasons for the good but not perfect agreement between theory and experiments in Ar at elevatedE/N are discussed, together with the intrinsic limitations of the experimental retarding-field technique.

Riassunto

L’accuratezza del metodo del «potenziale ritardante» comunemente utilizzato per la derivazione sperimentale di distribuzioni energetiche elettroniche è studiata con simulazioni Monte Carlo. Si mostra che la riflessione elettronica all’anodo e l’usuale estrapolazione ad energia zero dei dati sperimentali possono spiegare, almeno in parte, l’accordo osservato tra teoria ed esperienza. Le ragioni del buono, ma non perfetto, accordo in Ar ad elevatiE/N sono discusse in dettaglio unitamente alle limitazioni della tecnica sperimentale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Losee andD. S. Burch:Phys. Rev. A,6, 1652 (1972).

    Article  ADS  Google Scholar 

  2. T. D. Roberts andD. S. Burch:Phys. Rev.,142, 100 (1966).

    Article  ADS  Google Scholar 

  3. T. E. Kenny andJ. D. Craggs:J. Phys. B,3, 251 (1970).

    Article  ADS  Google Scholar 

  4. T. Makabe, T. Goto andT. Mori:J. Phys. B,10, 1781 (1977).

    Article  ADS  Google Scholar 

  5. K. Orihashi, T. Makabe andT. Mori:Proceedings of the XVI International C. P. I. G. (Düsseldorf, 1983).

  6. G. L. Braglia andJ. J. Lowke:J. Phys. D,12, 1831 (1979).

    Article  ADS  Google Scholar 

  7. J. J. Lowke, J. H. Parker andC. A. Hall:Phys. Rev. A,15, 1237 (1977).

    Article  ADS  Google Scholar 

  8. R. E. Robson:Aust. J. Phys.,34, 223 (1981) and references quoted therein.

    Article  ADS  Google Scholar 

  9. G. L. Braglia, M. Diligenti andL. Romanò:Nuovo Cimento B,79, 93 (1984).

    Article  ADS  Google Scholar 

  10. L. G. H. Huxley andR. W. Crompton:The Diffusion and Drift of Electrons in Gases (Wiley, New York, N.Y., 1974).

    Google Scholar 

  11. L. Pitchford andA. V. Phelps:Phys. Rev. A,25, 540 (1982). Cf. alsoG. L. Braglia, R. Winkler andJ. Wilhelm:Nuovo Cimento B,80, 21 (1984) and references quoted therein.

    Article  ADS  Google Scholar 

  12. G. L. Braglia:Lett. Nuovo Cimento,31, 183 (1981) and quoted references.

    Article  Google Scholar 

  13. G. L. Braglia:Beitr. Plasmaphys.,20, 147 (1980) and quoted references.

    Article  ADS  Google Scholar 

  14. G. L. Braglia:Phys. Rev. A,25, 1214 (1982).

    Article  ADS  Google Scholar 

  15. P. J. Chantry:Phys. Rev. A,25, 1209 (1982).

    Article  ADS  Google Scholar 

  16. R. R. Mitchell:Electron and Ion Swarms, edited byL. G. Christophorou (Pergamon Press, New York, 1981).

    Google Scholar 

  17. G. L. Braglia, M. Diligenti andL. Romanò:Lett. Nuovo Cimento,35, 193 (1982) and references quoted therein.

    Article  Google Scholar 

  18. G. L. Braglia, M. Diligenti andL. Romanò:Phys. Rev. A,26, 3689 (1982).

    Article  ADS  Google Scholar 

  19. M. Hayashi: IPPJ-AM-19 Report, Nagoya University (1981).

  20. P. Laborie, J. M. Rocard andJ. A. Rees:Electronic Cross-sections (Dunod, Paris, 1968).

    Google Scholar 

  21. R. Winkler, G. L. Braglia, A. Hess andJ. Wilhelm:Beitr. Plasmaphys.,24, 657 (1984).

    Article  ADS  Google Scholar 

  22. We assumer(ε)≤1 for the electron energies of our interest and identifyr(ε) with the probability to have elastic reflection. However, secondary emission can maker(ε)>1 at higher energies and, in particular, particle conservation at the anode invalid.

  23. Real reflection coefficients justify the assumptions of this paper. See, for instance,I. M. Bronschtein andS. B. Fraiman:Secondary Emission of Electrons (Nauka, Moscow, 1969), p. 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braglia, G.L., Romanò, L. & Diligenti, M. On the accuracy of experimental electron energy distributions in gases. Nuov Cim B 85, 193–207 (1985). https://doi.org/10.1007/BF02721560

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02721560

PACS

Navigation