Skip to main content
Log in

The classical motion of an extended charged particle revisited

Классическое движение протяженной заряженной частицы

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The motion of a nonrelativistic extended self-interacting particle is analysed. The equation of motion is integro-differential and generates, at variance with the pointlike case, a strictly causal behaviour, thus overcoming all the fundamental shortcomings of the Abraham-Lorentz theory. The motion is endowed with memory, which generates effects totally absent in the structureless case, such as the existence of characteristic damped oscillations, whose frequency and number are determined by the specific structure.

Riassunto

Si analizza il moto di una particella non relativistica estesa autointeragente. L’equazione di moto è integrodifferenziale e genera, diversamente dal caso puntiforme, un comportamento strettamente causale, cosí superando tutti gli svantaggi fondamentali della teoria di Abraham-Lorentz. Il moto è dotato di memoria, che genera effetti totalmente assenti nel caso senza struttura, come l’esistenza di caratterestiche oscillazioni smorzate, la frequenza e il numero delle quali sono determinati dalla struttura specifica.

Резюме

Анализируется движение нерелятивистской протяженной самовзаимодействующей частицы. Уравнение движения является интегродифференциальным и, в противоречии с точечно-подобным случаем, приводит к строго причинному поведению, тем самым устраняются все основные недостатки теории Абрагама-Лоренца. Движение обладает памятью, что приводит к возникновению эффектов, полностью отсутствующих в бесструктурном случае, таких как наличие характеристических затухающих осцилляций, частота и число которых определяется специальной структурой.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abraham:Phys. Z.,5, 576 (1904);H. A. Lorentz:The Theory of Electrons (New York, N. Y., 1952).

    MATH  Google Scholar 

  2. E. N. Plass:Rev. Mod. Phys.,33, 37 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  3. J. L. Jiménez andO. L. Fuchs:The integrodifferential version of the Abraham-Lorentz equation, preprint OFIN 19-80, Facultad de Ciencias, UNAM (to be published). This is a recent review of the subject.

  4. L. Landau andE. Lifshitz:The Classical Theory of Fields (Cambridge, Mass., 1951).

  5. P. A. M. Dirac:Proc. R. Soc. London Ser. A,167, 148 (1938).

    Article  ADS  Google Scholar 

  6. J. D. Jackson:Classical Electrodynamics (New York, N. Y., 1962).

  7. D. Ivanenko andA. A. Sokolov:Klassische Feldtheorie (Berlin, 1953) (translated from the Russian edition (1949)).

  8. R. Haag:Z. Naturforsch. Teil A,10, 752 (1955).

    ADS  MATH  Google Scholar 

  9. F. Rohrlich:Classical Charged Particles (Reading, Mass., 1965).

  10. J. S. Nodvik:Ann. Phys. (N. Y.),28, 225 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  11. J. D. Kaup:Phys. Rev.,152, 1130 (1966).

    Article  ADS  Google Scholar 

  12. H. Levine, E. J. Moniz andO. H. Sharp:Am. J. Phys.,45, 75 (1977);E. J. Moniz andO. H. Sharp:Phys. Rev. D,15, 2850 (1977).

    Article  ADS  Google Scholar 

  13. H. M. França, G. C. Marques andA. J. da Silva:Nuovo Cimento A,48, 65 (1978).

    Article  ADS  Google Scholar 

  14. L. de la Peña:Stochastic electrodynamics for the free particle, preprint IFUNAM 80-21 (to be published).

  15. N. N. Bogoliubov andS. V. Tyablikov:Izv. Akad. Nauk Ukr. SSR,5, 10 (1946).

    MATH  Google Scholar 

  16. The argument goes essentially as follows. The Lamb shift for the ground state of a harmonic oscillator is, in order of magnitude, 2 w 2mc 2; if we ascribe this energy to vibrations of the oscillator with amplitudea, so that it equalsmw 32 a 2, thena is to be interpreted as an effective radius of the electron. One getsa 2 2m 2 c 2≈ƛα2 0, which is the result referred to above.

  17. See,e.g.,A. Grünbaum andA. Janis:Am. J. Phys.,46, 337 (1978).

    Article  ADS  Google Scholar 

  18. A brief survey byT. H. Boyer is to be found inFoundations of Radiation Theory and Quantum Electrodynamics, edited byA. O. Barut (New York, N. Y., 1980);P. Claverie andS. Diner:Int. J. Quantum Chem.,12,Suppl. 1, 41 (1977);L. de la Peña andA. M. Cetto:J. Math. Phys. (N. Y.),18, 1612 (1977);20, 469 (1979).

  19. These exceptional charge distributions that generate poles on the real axis (σ=0) and hence correspond to stationary oscillations have been used as models to explain the atomic stability. See,e.g.,D. Bohm andM. Weinstein:Phys. Rev.,74, 1789 (1948);G. H. Goedecke:Phys. Rev. Sect. B,135, 281 (1964).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Peña, L., Jiménez, J.L. & Montemayor, R. The classical motion of an extended charged particle revisited. Nuov Cim B 69, 71–88 (1982). https://doi.org/10.1007/BF02721242

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02721242

Navigation