Skip to main content

Rapid-set, waterborne coatings from polyzwitterionic polymers formulated with a critical solvent combination


Waterborne coatings that rapidly set and become tack-free can be prepared from polymers containing both pendant anionic (acidic, carboxylate, or strong-acid groups such as sulfonate) and cationic functionality (quaternary ammonium groups). This phenomenon is related to anion-cation interactions that function as ionic crosslinks and dramatically enhance the physical properties and water resistance of the coatings. We define this process as “controlled ionic-coacervation.” The best coating properties can only be obtained by using a “critical solvent combination.” The critical solvent combination requires water plus at least two organic solvents: (1) a lower boiling (70 to 134°C) water-soluble organic solvent having at least one hydroxyl group and (2) a higher boiling (135 to about 250°C) organic solvent. Loss of only a small amount of solvent causes a coating to rapidly become tack-free. Ionization of acid functionalities on the polymers by an increase in pH (e.g., through the loss of CO2) can initiate controlled ionic interactions. The influence of polymer and solvent compositions on coating properties is discussed.

This is a preview of subscription content, access via your institution.


  1. Padget, J.C., “Polymers for Water-Based Coatings—A Systematic Overview,”Journal of Coatings Technology,66, No. 839, 89 (1994).

    CAS  Google Scholar 

  2. Silva, T.J., “Drying Time,” inPaint and Coating Testing Manual, Fourteenth Edition of the Gardner-Sward Handbook, Koleske, J.V. (Ed.), ASTM Manual Series: MNL 17, ASTM Publication Code Number 28-017095-14, p 439, ASTM, W. Conshohocken, PA, 1995.

    Google Scholar 

  3. Tsuchida, E. and Abe, K., “Interactions Between Macromolecules in Solution and Intermacromolecular Complexes,”Advances in Polymer Science, 45, Cantow, H.-J. et al. (Eds.), pp. 1–127, Springer-Verlag, NY (1982).

  4. Philipp, B., Dautzenberg, H., Dawydoff, W., and Linow, K.J., “Analytical Characterization of Symplex Formation and Symplex Structure,”Appl. Polym. Anal. Charat., 2, 281 (1992).

    CAS  Google Scholar 

  5. Mizuguchi, R., Takahashi, A., Takatsuki, I., and Uenaka, A., “Thermosetting Resin Composition,” U.S. 4,140,664 (Feb. 20, 1979).

  6. Kotz, J., Hahn, M., and Phillipp, B., “Inter- and Intramolecular Interactions in Polyelectrolyte Complex Formation with Polyampholytes,”Makromol. Chem. 194, 397, p. 397 (1993).

    Article  Google Scholar 

  7. Pickelman, D.M. and Yats, L.D., “Amphoteric Latexes Containing pH Independent and pH Dependent Bound Charges,” U.S. 4,544,697 (Oct. 1, 1985).

  8. Kangas, D. and Neuendorf, W.R., “Coacervation of Anion-Containing Aqueous Disperse Systems with Amphoteric Polyelectrolytes,” U.S. 3,347,396 (Mar. 30, 1976).

  9. Lovy, J. and Stoy, V.A., “Hydrophilic Acrylic Copolymers and Method of Preparation,” U.S. 5.252,692 (Oct. 12, 1993).

  10. Ahmed, I. and Hsieh, H.L., “Superabsorbent Crosslinked Ampholytic Ion Pair Copolymers Containing 2-methacryloyloxyethyldimethylammonium,” U.S. 5,130,389 (July 14, 1992).

  11. Hsieh, H.L., “Superabsorbent Crosslinked Ampholytic Pair Copolymers,” U.S. 5,116,921 (May 26, 1992).

  12. Ahmed, I. and Hsieh, H.L., “Superabsorbent Crosslinked Ampholytic Ion Pair Copolymers,” U.S. 5,075,399 (Dec. 24, 1991).

  13. Ahmed, I. and Hsieh, H.L., “Superabsorbent Crosslinked Ampholytic Ion Pair Copolymers,” U.S. 5,216,098 (June 1, 1993).

  14. Hsieh, H.L., “Superabsorbent Crosslinked Ampholytic Ion Pair Copolymers,” U.S. 5,354,806 (Oct. 11, 1994).

  15. Schieferstein, L., Hoeffkes H., Seidel, K., Giede, K., and Busch, P., “Zwitterionic Polymers and Their Use in Hair Treatment Preparations,” U.S. 4,814,101 (Mar. 21, 1989).

  16. Jeschke, P., Klewert, E., Schieferstein, L., Schumann, K., and Wisotzki, K.D., “Liquid Aqueous Cleaning Preparations for Hard Surfaces,” U.S. 4,784,789 (Nov. 15, 1988).

  17. Monroy Soto, V.M. and Galin, J.C. “Poly(sulphopropylbetaines): 1. Synthesis and Characterization,”Polymer, 35(1), 121 (1984);

    Article  Google Scholar 

  18. Soto, Monroy V.M. and Galin, J.C., “Poly(sulphopropylbetaines): 2. Dilute Solution Properties,”Polymer, 25(2), 254 (1984).

    Article  CAS  Google Scholar 

  19. Salamone, J.C., Volksen, W., and Israel, S.C.,Polym. Prep., 17, No. 2, 275 (1976);

    Google Scholar 

  20. Salamone, J.C., Tsai, C.C., Watterson, A.C., and Olson, A.P. “Novel Ampholytic Polymers. A New Class of Ionomer,”Polymeric Amines and Ammonium Salts, 105, Goethals, E.J. (Ed) (1979);

  21. Salamone, J.C., Rice, W.C., and Watterson, A.C., “Solution Behavior of an Alternating Anionic-Zwitterionic Copolymer,”J. Macromol. Sci., Chem., A28 (9), 885 (1991).

    Article  CAS  Google Scholar 

  22. Schmidt, D.L., Rose, G.D., and Miller, B.A., “Reversible and Irreversible Water-Based Coatings,” U.S. Patent 5,674,934 (Oct. 7, 1997).

  23. Bungenberg de Jong, H.G. and Kruyt, H.R., “Coazervation,”Kolloid-Z. 50 39 (1930).

    Article  Google Scholar 

  24. Menger, F. M. and Sykes, B. M.,Langmuir, 14, 4131 (1998).

    Article  CAS  Google Scholar 

  25. Schmidt, D.L. and Mussell, R.D., “Multisolvent-Based Film-Forming Compositions,” U.S. Patent 5,910,532 (June 8, 1999).

  26. Hill, L.W., Private communication, April 1998.

Download references

Author information

Authors and Affiliations


Additional information

1712 Building, Midland, MI, 48642. Email:

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmidt, D.L., Mussell, R.D. & Rose, G.D. Rapid-set, waterborne coatings from polyzwitterionic polymers formulated with a critical solvent combination. Journal of Coatings Technology 75, 59–64 (2003).

Download citation

  • Issue Date:

  • DOI:


  • Trimethy Lammonium Chloride
  • Knoop Hardness
  • Waterborne Coating
  • Methacryloyloxy
  • Solvent Combination