Agrawal R, Srikant R 1994 Fast algorithms for mining association rules in large databases. In*Proc. 20th Int. Conf. on Very Large Data Bases*, pp 487–499

Agrawal R, Srikant R 1995 Mining sequential patterns. In

*Proc. 11th Int. Conf. on Data Engineering*, (Washington, DC: IEEE Comput. Soc.)

Google ScholarAgrawal R, Imielinski T, Swami 1993 A Mining association rules between sets of items in large databases. In*Proc. ACM SIGMOD Conf. on Management of Data*, pp 207–216

Agrawal R, Lin K I, Sawhney H S, Shim K 1995a Fast similarity search in the presence of noise, scaling and translation in time series databases. In*Proc. 21st Int. Conf. on Very Large Data Bases (VLDB95)*, pp 490–501

Agrawal R, Psaila G, Wimmers E L, Zait M 1995b Querying shapes of histories. In*Proc. 21st Int. Conf. on Very Large Databases*, Zurich, Switzerland

Alon J, Sclaroff S, Kollios G, Pavlovic V 2003 Discovering clusters in motion time series data. In*Proc. 2003 IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition*, pp I-375–I-381, Madison, Wisconsin

Alur R, Dill D L 1994 A theory of timed automata.

*Theor. Comput. Sci.* 126: 183–235

MATHCrossRefMathSciNetGoogle ScholarAtallah M J, Gwadera R, Szpankowski W 2004 Detection of significant sets of episodes in event sequences. In*Proc. 4th IEEE Int. Conf. on Data Mining (ICDM 2004)*, pp 3–10, Brighton, UK

Baeza-Yates R A 1991 Searching subsequences.

*Theor. Comput. Sci.* 78: 363–376

MATHCrossRefMathSciNetGoogle ScholarBaldi P, Chauvin Y, Hunkapiller T, McClure M 1994 Hidden Markov models of biological primary sequence information.

*Proc. Nat. Acad. Sci. USA* 91: 1059–1063

CrossRefGoogle ScholarBender E A, Kochman F 1993 The distribution of subword counts is usually normal.

*Eur. J. Combinatorics* 14: 265–275

MATHCrossRefMathSciNetGoogle ScholarBerberidis C, Vlahavas I P, Aref W G, Atallah M J, Elmagarmid A K 2002 On the discovery of weak periodicities in large time series. In

*Lecture notes in computer science, Proc. 6th Eur. Conf. on Principles of Data Mining and Knowledge Discovery*, vol. 2431, pp 51–61

Google ScholarBettini C, Wang X S, Jajodia S, Lin J L 1998 Discovering frequent event patterns with multiple granularities in time sequences.

*IEEE Trans. Knowledge Data Eng.* 10: 222–237

CrossRefGoogle ScholarBox G E P, Jenkins G M, Reinsel G C 1994

*Time series analysis: Forecasting and control* (Singapore: Pearson Education Inc.)

MATHGoogle ScholarCadez I, Heckerman D, Meek C, Smyth P, White S 2000 Model-based clustering and visualisation of navigation patterns on a web site. Technical Report CA 92717-3425, Dept. of Information and Computer Science, University of California, Irvine, CA

Google ScholarCao H, Cheung D W, Mamoulis N 2004 Discovering partial periodic patterns in discrete data sequences. In*Proc. 8th Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD ’04)*, Sydney, pp 653–658

Casas-Garriga G 2003 Discovering unbounded episodes in sequential data. In*Proc. 7th Eur. Conf. on Principles and Practice of Knowledge Discovery in Databases* (*PKDD’03*), Cavtat-Dubvrovnik, Croatia, pp 83–94

Chang S F, Chen W, Men J, Sundaram H, Zhong D 1998 A fully automated content based video search engine supporting spatio-temporal queries.

*IEEE Trans. Circuits Syst. Video Technol.* 8(5): 602–615

CrossRefGoogle ScholarChatfield C 1996

*The analysis of time series* 5th edn (New York, NY: Chapman and Hall)

MATHGoogle ScholarChudova D, Smyth P 2002 Pattern discovery in sequences under a Markovian assumption. In*Proc. Eigth ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining*, Edmonton, Alberta, Canada

Cohen J 2004 Bioinformatics — an introduction for computer scientists.

*ACM Comput. Surv.* 36(2): 122–158

CrossRefGoogle ScholarCorpet F 1988 Multiple sequence alignment with hierarchical clustering.

*Nucleic Acids Research*, 16: 10881–10890

CrossRefGoogle ScholarDarrell T, Pentland A 1993 Space-time gestures. In*Proc. 1993* IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition (CVPR’93), pp 335–340

Dietterich T G, Michalski R S 1985 Discovering patterns in sequences of events.

*Artif. Intell.* 25: 187–232

CrossRefGoogle ScholarDuda R O, Hart P E, Stork D G 1997

*Pattern classification and scene analysis* (New York: Wiley)

Google ScholarDurbin R, Eddy S, Krogh A, Mitchison G 1998

*Biological sequence analysis* (Cambridge: University Press)

MATHGoogle ScholarEwens W J, Grant G R 2001

*Statistical methods in bioinformatics: An introduction* (New York: Springer-Verlag)

MATHGoogle ScholarFadili M J, Ruan S, Bloyet D, Mazoyer B 2000 A multistep unsupervised fuzzy clustering analysis of fMRI time series.

*Human Brain Mapping* 10: 160–178

CrossRefGoogle ScholarFlajolet P, Guivarc’h Y, Szpankowski W, Vallee B 2001 Hidden pattern statistics. In

*Lecture notes in computer science; Proc. 28th Int. Colloq. on Automata, Languages and Programming* (London: Springer-Verlag) vol. 2076, pp 152–165

Google ScholarFrenkel K A 1991 The human genome project and informatics.

*Commun. ACM* 34(11): 40–51

CrossRefGoogle ScholarGarofalakis M, Rastogi R, Shim K 2002 Mining sequential patterns with regular expression constraints.

*IEEE Trans. Knowledge Data Eng.* 14: 530–552

CrossRefGoogle ScholarGhias A, Logan J, Chamberlin D, Smith B C 1995 Query by humming — musical information retrieval in an audio database. In*Proc. ACM Multimedia 95*, San Fransisco, CA

Gold B, Morgan N 2000

*Speech and audio signal processing: Processing and perception of speech and music* (New York: John Wiley & Sons)

Google ScholarGray R M, Buzo A, Gray Jr. A H, Matsuyama Y 1980 Distortion measures for speech processing.

*IEEE Trans. Acoust., Speech Signal Process.* 28: 367–376

MATHCrossRefGoogle ScholarGusfield D 1997

*A lgorithms on strings, trees and subsequences* (New York: University of Cambridge Press)

Google ScholarGwadera R, Atallah M J, Szpankowski W 2003 Reliable detection of episodes in event sequences. In*Proc. 3rd IEEE Int. Conf. on Data Mining (ICDM 2003*), pp 67–74

Gwadera R, Atallah M J, Szpankowski W 2005 Markov models for identification of significant episodes. In*Proc. 2005* SIAM Int. Conf. on Data Mining (SDM-05), Newport Beach, California

Han J, Kamber M 2001

*Data mining: Concepts and techniques* (San Fransisco, CA: Morgan Kauffmann)

Google ScholarHan J, Gong W, Yin Y 1998 Mining segment-wise periodic patterns in time-related databases. In*Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining (KDD’98)*, New York, pp 214–218

Han J, Dong G, Yin Y 1999 Efficient mining of partial periodic patterns in time series database. In*Proc. 15th Int. Conf. on Data Engineering, (ICDE’99)*, Sydney, pp 106–115

Hand D, Mannila H, Smyth P 2001

*Principles of data mining* (Cambridge, MA: MIT Press)

Google ScholarHaselsteiner E, Pfurtscheller G 2000 Using time-dependent neural networks for EEG classification.

*IEEE Trans. Rehab. Eng.* 8: 457–463

CrossRefGoogle ScholarHastie T, Tibshirani R, Friedman J 2001

*The elements of statistical learning: Data mining, inference and prediction* (New York: Springer-Verlag)

MATHGoogle ScholarHaykin S 1992

*Neural networks: A comprehensive foundation* (New York: Macmillan)

Google ScholarHirao M, Inenaga S, Shinohara A, Takeda M, Arikawa S 2001 A practical algorithm to find the best episode patterns.*Lecture notes in computer science; Proc. 4th Int. Conf. on Discovery Science (DS 2001*) Washington, DC, vol. 2226, pp 435–441, 25–28

Juang B H, Rabiner L 1993

*Fundamentals of speech recognition.* (Englewood Cliffs, NJ: Prentice Hall)

Google ScholarKalpakis K, Puttagunta D G V 2001 Distance measures for effective clustering of ARIMA time series. In*2001 IEEE Int. Conf. on Data Mining (ICDM01)*, San Jose, CA

Keogh E J, Pazzani M J 2000 Scaling up dynamic time warping for datamining applications. In*Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data mining*, Boston, MA, pp 285–289, 20–23

Koskela T, Lehtokangas M, Saarinen J, Kaski K 1996 Time series prediction with multilayer perceptron, FIR and Elman neural networks. In*Proc. World Congress on Neural Networks*, pp 491–496

Kruskal J B 1983 An overview of sequence comparison: Time warps, string edits and macromolecules.

*SIAM Rev.* 21:201–237

CrossRefMathSciNetGoogle ScholarKundu A, He Y, Bahl P 1988 Word recognition and word hypothesis generation for handwritten script: A Hidden Markov Model based approach. In*Proc. 1988 IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition (CVPR’88)*, pp 457–462

Law M H, Kwok J T 2000 Rival penalized competitive learning for model-based sequence clustering. In*Proc. IEEE Int. Conf. on Pattern Recognition (ICPR00)*, Barcelona, Spain

Laxman S, Sastry P S, Unnikrishnan K P 2002 Generalized frequent episodes in event sequences.*Temporal Data Mining Workshop Notes, SIGKDD*, (eds) K P Unnikrishnan, R Uthurusamy, Edmonton, Alberta, Canada

Laxman S, Sastry P S, Unnikrishnan K P 2004a Fast algorithms for frequent episode discovery in event sequences. Technical Report CL-2004-04/MSR, GM R&D Center, Warren

Google ScholarLaxman S, Sastry P S, Unnikrishnan K P 2004b Fast algorithms for frequent episode discovery in event sequences. In*Proc. 3rd Workshop on Mining Temporal and Sequential Data*, Seattle, WA

Laxman S, Sastry P S, Unnikrishnan K P 2005 Discovering frequent episodes and learning hidden markov models: A formal connection.

*IEEE Trans. Knowledge Data Eng.* 17: 1505–1517

CrossRefGoogle ScholarLee C-H, Chen M-S, Lin C-R 2003 Progressive pattern miner: An efficient algorithm for mining general temporal association rules.

*IEEE Trans. Knowledge Data Eng.* 15: 1004–1017

CrossRefGoogle ScholarLevenshtein VI 1966 Binary codes capable of correcting deletions, insertions and reversals.

*Sov. Phys. Dokl.* 10: 707–710

MathSciNetGoogle ScholarLin M-Y, Lee S-Y 2003 Improving the efficiency of interactive sequential pattern mining by incremental pattern discovery. In*Proc. IEEE 36th Annu. Hawaii Int. Conf. on System Sciences (HICSS03)*, Big Island, Hawaii

Ma S, Hellerstein J L 2001 Mining partially periodic event patterns with unknown periods. In*Proc. 17th Int. Conf. on Data Eng. (ICDE’01)*, pp 205–214

Mannila H, Rusakov D 2001 Decomposition of event sequences into independent components. In*First SIAM Int. Conf. on Data Mining*, Chicago, IL

Mannila H, Toivonen H, Verkamo A I 1997 Discovery of frequent episodes in event sequences.

*Data Mining Knowledge Discovery* 1: 259–289

CrossRefGoogle ScholarMeger N, Rigotti C 2004 Constraint-based mining of episode rules and optimal window sizes. In*Proc. 8th Eur. Conf. on Principles and Practice of Knowledge Discovery in Databases (PKDD ’04)*, Pisa, Italy

Miller R T, Christoffels A G, Gopalakrishnan C, Burke J, Ptitsyn A A, Broveak T R, Hide W A 1999 A comprehensive approach to clustering of expressed human gene sequence: The sequence tag alignment and consensus knowledge base.

*Genome Res.* 9: 1143–1155

CrossRefGoogle ScholarMiller W, Schwartz S, Hardison R C 1994 A point of contact between computer science and molecular biology.

*IEEE Comput. Sci. Eng.* 1: 69–78

CrossRefGoogle ScholarNag R, Wong K H, Fallside F 1986 Script recognition using Hidden Markov Models. In*Proc. 1986 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP’86)*, pp 2071–2074

Nalwa V S 1997 Automatic on-line signature verification.

*Proc. IEEE* 85: 215–239

CrossRefGoogle ScholarNg R T, Lakshmanan L V S, Han J, Pang A 1998 Exploratory mining and pruning optimizations of constrained associations rules. In*Proc. 1998 ACM SIGMOD Int. Conf. on Management of Data*, (Seattle, Washington) pp 13–24

Oates T, Firoiu L, Cohen P R 2001 Using dynamic time warping to bootstrap HMM-based clustering of time series. In

*Lecture notes in computer science; Sequence learning: Paradigms, algorithms, and applications* (eds) C L Giles, R Sun (Heidelberg: Springer-Verlag) vol. 1828, p. 35

Google ScholarOsata N

*et al* 2002 A computer-based method of selecting clones for a full-length cDNA project: Simulataneous collection of negligibly redundant and variant cDNAs.

*Genome Res.* 12: 1127–1134

CrossRefGoogle ScholarO’Shaughnessy D 2003

*Speech communications: Human and machine* (Piscataway, NJ: IEEE Press)

Google ScholarOzden B, Ramaswamy S, Silberschatz A 1998 Cyclic association rules. In*Proc. 14th Int. Conf. on Data Engineering (ICDE’98)*, Orlando, Florida, pp 412–421

Pasquier N, Bastide Y, Taouil R, Lakhal L 1999 Discovering frequent closed itemsets for association rules. In

*Lecture notes in computer science; Proc. 7th Int. Conf. on Database Theory (ICDT99)*, Jerusalem, Israel, vol. 1540, pp 398–416

Google ScholarPerng C-S, Wang H, Zhang S R, Parker D S 2000 Landmarks: A new model for similarity-based pattern querying in time series databases. In*16th Int. Conf. on Data Engineering (ICDE00)*, p. 33, San Diego, CA

Pevzner P A, Borodovski M Y, Mironov A A 1989 Linguistic of nucleotide sequences: The significance of deviation from mean statistical characteristics and prediction of the frequencies of occurrence of words.

*J. Biomol. Struct. Dynamics* 6: 1013–1026

Google ScholarRabiner L R 1989 A tutorial on hidden Markov models and selected applications in speech recognition.

*Proc. IEEE* 77: 257–286

CrossRefGoogle ScholarRegnier M, Szpankowski W 1998 On pattern frequency occurrences in a Markovian sequence.

*Algorithmica* 22: 631–649

MATHCrossRefMathSciNetGoogle ScholarSchreiber T, Schmitz A 1997 Classification of time series data with nonlinear similarity measures.

*Phys. Rev. Lett.* 79: 1475–1478

CrossRefGoogle ScholarSclaroff S, Kollios G, Betke M, Rosales R 2001 Motion mining. In

*Lecture notes in computer science*;

*Proc. 2nd Int. Workshop on Multimedia Databases and Image Communication* (Heidelberg: Springer-Verlag)

Google ScholarSebastiani P, Ramoni M, Cohen P, Warwick J, Davis J 1999 Discovering dynamics using bayesian clustering. In

*Lecture notes in computer science*;

*Adv. in Intelligent Data Analysis: 3rd Int. Symp., IDA-99* (Heidelberg: Springer-Verlag) vol. 1642, p. 199

Google ScholarShintani T, Kitsuregawa M 1998 Mining algorithms for sequential patterns in parallel: Hash based approach. In*Proc. 2nd Pacific-Asia Conf. on Knowledge Discovery and Data Mining*, pp 283–294

Smyth P 1997 Clustering sequences with hidden Markov models.

*Adv. Neural Inf. Process.* 9: 648–655

MathSciNetGoogle ScholarSmyth P 2001 Data mining at the interface of computer science and statistics. In

*Data mining for scientific and engineering applications.* (eds) R L Grossman, C Kamath, P Kegelmeyer, V Kumar, R R Namburu (Dordrecht: Kluwer Academic)

Google ScholarSrikanth R, Agrawal R 1996 Mining sequential patterns: Generalizations and performance improvements. In*Proc. 5th Int. Conf. on Extending Database Technology (EDBT)*, Avignon, France

Starner T E, Pentland A 1995 Visual recognition of American sign language. In*Proc. 1995 Int. Workshop on Face and Gesture Recognition*, Zurich

Sutton R S 1988 Learning to predict by method of temporal differences.

*Machine Learning* 3(1): 9–44

Google ScholarSze S H, Gelfand M S, Pevzner P A 2002 Finding weak motifs in DNA sequences. In*Proc. 2002 Pacific Symposium on Biocomputing*, pp 235–246

Tappert C C, Suen C Y, Wakahara T 1990 The state of the art in on-line handwriting recognition.

*IEEE Trans. Pattern Anal. Machine Intell.* 12: 787–808

CrossRefGoogle ScholarTino P, Schittenkopf C, Dorffner G 2000 Temporal pattern recognition in noisy non-stationary time series based on quantization into symbolic streams: Lessons learned from financial volatility trading (url:citeseer.nj.nec.com/tino00temporal.html)

Tronicek Z 2001 Episode matching. In

*Proc. 12th Annu. Symp. on Combinatorial Pattern Matching (CPM 2001)*, Jerusalem, Israel, vol. 2089, pp 143–146

Google ScholarWan E A 1990 Temporal backpropagation for FIR neural networks. In

*Int. Joint Conf. on Neural Networks (1990 IJCNN)*, vol. 1, pp 575–580

CrossRefGoogle ScholarWang J T-L, Chirn G-W, Marr T G, Shapiro B, Shasha D, Zhang K 1994 Combinatorial pattern discovery for scientific data: some preliminary results. In*Proc. 1994 ACM SIGMOD Int. Conf. on Management of Data*, Minneapolis, Minnesota, pp 115–125

Wang J, Han J 2004 BIDE: Efficient mining of frequent closed sequences. In*20th Int. Conf. on Data Engineering*, Boston, MA

Witten I H, Frank E 2000

*Data mining: Practical machine learning tools and techniques with JAVA implementations* (San Fransisco, CA: Morgan Kaufmann)

Google ScholarWu C, Berry M, Shivakumar S, McLarty J 1995 Neural networks for full-scale protein sequence classification: Sequence encoding with singular value decomposition.

*Machine Learning*, Special issue on applications in molecular biology 21(1–2): 177–193 Wu S, Manber U 1992 Fast text searching allowing errors.

*Commun. ACM* 35(10): 83–91

Google ScholarWu Y-L, Agrawal D, Abbadi A E 2000 A comparison of DFT and DWT based similarity search in time series databases. In*Proc. Ninth Int. Conf. on Information and Knowledge Management*, McLean, VA, pp 488–495

Xiong Y, Yeung D Y 2002 Mixtures of ARMA models for model-based time series clustering. In*2002 IEEE Int. Conf. on Data Mining*, Maebashi City, Japan, pp 717–720

Yamato J, Ohya J, Ishii K 1992 Recognizing human action in time-sequential images using Hidden Markov Model. In*Proc. 1992 IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition (CVPR’92)*, Champaign, IL, pp 379–385

Yan X, Han J, Afshar R 2003 CloSpan: Mining closed sequential patterns in large datasets. In*Proc. 2003 Int. SIAM Conf. on Data Mining (SDM03)*, San Fransisco, CA

Yule G 1927 On a method of investigating periodicity in distributed series with special reference to Wolfer’s sunspot numbers.*Philos. Trans. R. Soc. London* A226

Zaki M J 1998 Efficient enumeration of frequent sequences. In*Proc. ACM 7th Int. Conf. Information and Knowledge Management (CIKM)*