Abstract
To analyze the physical phenomena occurring in the Proton Exchange Membrane Fuel Cell (PEMFC) using Computational Fluid Dynamics (CFD) technique under an isothermal operating condition, four major governing equations such as continuity equation, momentum conservation equation, species transport equation and charge conservation equation should be solved. Among these governing equations, using the interfacial boundary condition is necessary for solving the water transport equation properly since the concept of water concentration in membrane/electrode assembly (MEA) and other regions is totally different. It was first attempted to solve the water transport equation directly in the MEA region by using interfacial boundary condition; and physically-meaningful data such as water content, proton conductivity, etc. were successfully obtained. A detailed problem-solving methodology for PEMFC is presented and result comparison with experimental data is also implemented in this paper.
This is a preview of subscription content, access via your institution.
References
Bernadi, D. M. and Verbrugge, M. W., “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte,”AIChE J.,37(8), 1151 (1991).
Berning, T., Lu, D. M. and Djilali, N., “Three-dimensional Computational Analysis of Transport Phenomena in PEM Fuel Cell,”J. Power Sources,106, 284 (2002).
Bird, R. B., Stewart, W. E. andLightfoot, E.N., “Transport Phenomena,” John Wiley & Sons, Inc. (1960).
Carrette, L., Friedrich, K. A. and Stimming, U., “Fuel Cells-Fundamentals and Applications,”FUEL CELLS,1, 5 (2001).
Carrette, L., et al., “Fuel Cells: Principles, Types, Fuels, and Applications,”CHEMPHYSCHEM,1, 162 (2000).
Center for Fuel Cell Research at USC :http://www.che.sc.edu/centers/PEMFC
CFD Online :http://www.cfd-online.com
Choi, K.-H., Peck, D. H., Kim, C. S., Shin, D. R. and Lee, T. H., “Water Transport in Polymer Membranes for PEMFC”,J. Power Sources,86, 197 (2000).
Davis, C. W., “A Dictionary of Electrochemistry" THE MACMILL AN PRESS Ltd. (1976).
DuPont’s Web Site :http://www.dupont.com
Dutta, S., Shimpalee, S. and Van Zee, J. W., “Three-dimensional Numerical Simulation of Straight Channel PEM Fuel Cells”,J. Appl. Electrochem.,30, 135 (2000).
Electrochemical Engine Center at Penn State University :http:// mtrl1.me.psu.edu
“High Temperature Membranes for Solid Polymer Fuel Cells,” ETSU F/02/00189/REP (2001).
Himmelblau, D. M., “Basic Principles and Calculations in Chemical Engineering" Prentice-Hall International, Inc. (1996).
IESVic Integrated Energy Systems :http://www.iesvic.uvic.ca
Jo, J. H., “A Mathematical Modeling of an Alkaline Fuel Cell,” Ph.D. Dissertation, Hanyang University (1999).
Kordesch, K. and Simader, G., “ Fuel Cells and Their Applications,” VCH (1996).
Korea Fuel Cell Community :http://www.freechal.com/fuelcell
Larminie, J., “Fuel Cell Systems Explained”, JOHN WILEY & SONS LTD. (2000).
Module 4 : Fuel Cell Technology, Hydrogen Fuel Cell Engines and Related Technologies, College of the Desert (2001).
Patankar, S.V., “Numerical Heat Transfer and Fluid Flow,” Hemisphere Publishing Corporation (1980).
Singh, D., Lu, D. M. and Djilali, N., “A Two-dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells”,Int. J. Eng. Sci.,37, 431 (1999).
Springer, T. E., Zawodzinski, T. A. and Gottesfeld, S., “Polymer Electrolyte Fuel Cell Model,”J. Electrochem. Soc.,138(8), 2334 (1991).
Srinivasan, S., Manko, D. J., Koch, H., Enayetullah, M. A. and Appleby, A. J., “Recent Advances in Solid Polymer Electrolyte Fuel Cell Technology with Low Platinum Loading Electrodes,”J. Power Sources,29, 367 (1990).
Um, S. K., Wang, C. Y. and Chen, K.S., “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,”J. Electrochem. Soc.,147(12), 4485 (2000).
Wang, C. Y. and Gu, W B., “Micro-macroscopic Coupled Modeling of Battery and Fuel Cell Systems. Part II: Application to Ni-Cd and Ni-MH Cells,”J. Electrochem. Soc.,145(10), (1998).
Weber, A. Z. and Newman, J., “Transport in Polymer-Electrolyte Membranes: I. Physical Model”,J. Electrochem. Soc.,150(7), A1008 (2003).
White, R. E., Lorimer, S. E. and Darby, R., “Prediction of the Current Density at an Electrode at Which Multiple Electrode Reactions Occur under Potentiostatic Control,”J. Electrochem. Soc.,130, 1123 (1983).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lee, C.S., Yi, S.C. Numerical methodology for proton exchange membrane fuel cell simulation using computational fluid dynamics technique. Korean J. Chem. Eng. 21, 1153–1160 (2004). https://doi.org/10.1007/BF02719487
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02719487
Key words
- PEMFC
- CFD
- Modeling