Skip to main content
Log in

Degradation of styrene by a new isolatePseudomonas putida SN1

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Twelve styrene-utilizing bacteria were isolated from a biofilter used for treating gaseous styrene. A gramnegative strain had a high styrene-degrading activity and was identified as Pseudomonas putida SN1 by 16S rDNA analysis. The styrene degradation in SN1 was regarded to start with a monooxygenase enzyme which converted styrene to styrene oxide, a potentially important chiral building block in organic synthesis. SN1 could grow on styrene and styrene oxide, but not on benzene and toluene. The styrene degradation activity in SN1 was induced when incubated with styrene, and the induction was not inhibited by the presence of readily usable carbon sources such as glucose and citrate. The optimal activity was shown at pH 7.0 and 30 °C and estimated as 170 unit/g cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beltmetti, F., Marconi, A. M., Bestetti, G., Colombo, C., Galli, E., Ruzzi, M. and Zennaro, E., “Sequencing and Functional Analysis of Styrene Catabolism Genes fromPseudomonas fluorescens ST,”Appl. Environ. Microbiol.,63, 232 (1997).

    Google Scholar 

  • Besse, P. and Veschambre, H., “Chemical and Biological Synthesis of Chiral Epoxides,”Tetrahedron,50, 885 (1994).

    Article  Google Scholar 

  • Collins, A. N., Sheldrake, G. N. and Crosby, J.,Chirality in Industry, John Wiley & Sons, New York (1992).

    Google Scholar 

  • Cox, H.H. J., Faber, B.W., vanFningen, W.N. M., Radhoe, H., Doddema, H. J. and Harder, W., “Styrene Metabolism inExophiala jeanselmei and Involvement of a Cytochome P-450-Dependent Styrene Monooxygenase,”Appl. Environ. Microbiol.,62, 1471 (1996).

    CAS  Google Scholar 

  • Gennaro, P. D., Colmegna, A., Galli, E., Sello, G., Pelizzoni, F. and Bestetti, G., “A New Biocatalyst for Production of Optically Pure Aryl Epoxides by Styrene Monooxygenase from Pseudomonas fluorescens ST,”Appl. Environ. Microbiol.,65, 2794 (1999).

    Google Scholar 

  • Grogan, C. R. and Willertts, A., “Biohydrolysis of Substituted Styrene Oxides by Beauveria densa CMC 3240, Journal of Molecular Catalysis B,”Enzymatic,3, 253 (1997).

    Article  CAS  Google Scholar 

  • Han, J. H.,Production of Enantiopure (S)-Styrene Oxide Using a Mutant of Pseudomonas putida Lacking Styrene Oxide Isomerase, Thesis for masters degree, Pusan National University (2004).

  • Hartmans, S., Smits, J. P., van der Werf, M. J., Volkering, F. and de Bont, J. A. M., “Metabolism of Styrene Oxide and 2-Phenylethanol in the Styrene-degradingXanthobacter Strain 124X,”App. Environ. Microbiol., 55(11), 2850 (1989).

    CAS  Google Scholar 

  • Hartmans, S., van der Werf, M. J. and de Bont, J. A.M., “Bacterial Degradation of Styrene Involving a Novel Flavin Adenine Dinucleotide-Dependent Styrene Monooxygenase,”Appl. Environ. Microbiol., 56(5), 1347 (1990).

    CAS  Google Scholar 

  • Hasegawa, J. and Ohashi, T., “Production Methods of Chiral Synthons Using Enzymes and Microorganism,”Chem. Today June,44 (1996).

  • Hollmann, F., Lin, P., Witholt, B. and Schmid, A., “Stereospecific Biocatalytic Epoxidation: The First Example of Direct Regeneration of a FAD-Dependent Monooxygenase for Catalysis,”J. Am. Chem. Soc.,125, 8209 (2003).

    Article  CAS  Google Scholar 

  • Itoh, N., Yoshida, K. and Okada, K., “Isolation and Identification of StyrenedegradingCorynebacterium Strains, and Their Styrene Metabolism,”Biosci Biotechnol Biochem., 60(11), 1826 (1996).

    Article  CAS  Google Scholar 

  • Kang, J.M.,Biological Degradation of Ethylene Chlorides using Methylosinus trichosporium OB3b, Thesis for master degree, Pusan National University (1998).

  • Kim, J. R.,Biological Production of Hydrogen from Carbon Monoxide and Water by the Novel Chemoheterotrophic Bacterium Citrobacter sp. Y19, Thesis for master degree, Pusan National University (2000).

  • Kim, S. B., Yoon, J. H., Kim, H., Lee, S. T., Park, Y.H. and Goodfellow, M., “A Phylogenetic Analysis of the Genus Saccharomonospora Conducted with 16S rRNA Gene Sequences,”Int. J. Syst. Bacteriol.,45, 351 (1995).

    Article  CAS  Google Scholar 

  • Klasson, K. T., Lundback, K. M. O., Clausen, E. C. and Gaddy, J. L., “Kinetics of Light Limited Growth and Biological Hydrogen Production from Carbon Monoxide and Water byRhodospirillum rubrum,”J. Biotechnol.,29, 177 (1993).

    Article  CAS  Google Scholar 

  • Marconi, A. M., Beltrametti, F., Bestetti, G., Solinas, F., Ruzzi, M., Galli, E. and Zennaro, E., “Cloning and Characterization of Styrene Catabolism Genes fromPseudomonas fluorescens ST,”Appl. Environ. Microbiol.,62, 121 (1996).

    CAS  Google Scholar 

  • Martinez-Blanco, H., Reglero, A., Rodriquez-Aparacio, L. B. and Luengo, J. M., “Purification and Biochemical Characterization of Phenylacetyl-coA Ligase fromPseudomonas putida. A Specific Enzyme for the Catabolism of Phenylacetic Acid,”J. Biol. Chem.,265, 7084 (1990).

    CAS  Google Scholar 

  • Nothe, C. and Hartmans, S., “Formation and Degradation of Styrene Oxide Stereoisomers by Different Microorganisms,”Biocatalysis,10, 219 (1994).

    CAS  Google Scholar 

  • O’Connor, K. E., Dobson, A.D.W. and Hartmans, S., “Indigo Formation by Microorganism Expressing Styrene Monooxygenase Activity,”Appl. Environ. Micobiol.,63, 4287 (1997).

    CAS  Google Scholar 

  • O’Connor, K. E., Buckley, C.M., Hartmans, S. and Dobson, D.W., “Possible Regulation Role for Nonaromatic Carbon Sources in Styrene Degradation byPseudomonas putida CA-3,”Appl. Environ. Microbiol.,61, 544 (1995).

    CAS  Google Scholar 

  • O’Leary, N. D., O’conner, K. E., Duetz, W. and Dobson, A. D.W., “Transcriptional Regulation of Styrene Degradation inPseudomonas putida CA-3,”Microbiology,147, 973 (2001).

    CAS  Google Scholar 

  • Panke, S., V. de Lorenzo, Kaiser, A., Witholt, B. and Wubbolts, M.G., “Engineering of a Stable Whole-cell Biocatalyst Capable of (S)-Styrene Oxide Formation for Continuous Two-liquid-phase Applications,”Appl. Environ. Microbiol.,65, 5619 (1999).

    CAS  Google Scholar 

  • Panke, S., Witholt, B., Schmid, A. and Wubbolts, M., “Towards a Biocatalyst for (S)-Styrene Oxide Production; Characterization of the Styrene Degradation Pathway ofPseudomonas sp. Strain VLB120,”Appl. Environ. Microbiol., 64(6), 2032 (1998).

    CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning:A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, NY (1989).

    Google Scholar 

  • Santos, P.M., Blatny, J.M., de Bartolo, I., Valla, S. and Zennaro, E., “Physiological Analysis of the Expression of the Styrene Degradation Gene Cluster inPseudomonas fluorescens ST,”Appl. Environ. Microbiol., 66(4), 1305 (2000).

    Article  CAS  Google Scholar 

  • Sheldon, R. A., “Fine Chemicals by Catalytic Oxidation,”Chemtech. September,566, 576 (1991).

    Google Scholar 

  • Shiray, K. and Hisatsuka, K., “Isolation and Identification of Styrene Assimilating Bacteria,”Agric. Biol. Chem.,43, 1595 (1979).

    Google Scholar 

  • Shiray, K. and Hisatsuka, K., “Production of Β-Phenethylalcohol from Styrene byPseudomonas 305-STR-1-4,”Agric. Biol. Chem.,43, 1399 (1979).

    Google Scholar 

  • Velasco Ana, Alonso Sergio, Jose L. Garcia, Perera, J. and Diaz Eduardo, “Genetic and Functional Analysis of the Styrene Catabolic Cluster ofPseudomonas sp. Strain Y2,”J. Bacteriol., 180(5), 1063 (1998).

    CAS  Google Scholar 

  • Warhurst, A. M. and Fewson, C. A., “Microbial Metabolism and Biotransformations of Styrene,”J. Appl. Bacteriol.,77, 597 (1994).

    CAS  Google Scholar 

  • Wubbolts, M.G., Reuvekamp, P. and Witholt, B., “TOL Plasmid-specified Xylene Oxygenase is a Wide Substrate Range Monooxygenase Capable of Olefin Epoxidation,”Enzyme Microb. Technol.,16, 608 (1994).

    Article  CAS  Google Scholar 

  • Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T. and Arakawa, M., “Proposal ofBurkholderia gen. nov. and Transfer of Seven Species of the GenusPseudomonas Homology Group II to the New Genus, with the Type SpeciesBurkholderia cepacia (Palleroni and Holmes 1981) comb. nov.,”Microbiol. Immunol.,36, 1251 (1992).

    CAS  Google Scholar 

  • Yoo, S. S.,Production of (S)-Styrene Oxide by Microbial Enantioselective Hydrolysis, Thesis for masters degree, Pusan National University (2003).

  • Yeom, S. and Yoo, Y., “Analysis of Microbial Adaptation at Enzyme Level for Enhancing Biodegradation Rate of BTX,”Korean J. Chem. Eng., 19(5), 780 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, M.S., Han, J.H., Yoo, S.S. et al. Degradation of styrene by a new isolatePseudomonas putida SN1. Korean J. Chem. Eng. 22, 418–424 (2005). https://doi.org/10.1007/BF02719421

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02719421

Key words

Navigation