, Volume 46, Issue 1, pp 41–57 | Cite as

The multiresolution histogram

  • Joachim Engel


We introduce a new method for locally adaptive histogram construction that doesn’t resort to a standard distribution and is easy to implement: the multiresolution histogram. It is based on aL 2 analysis of the mean integrated squared error with Haar wavelets and hence can be associated with a multiresolution analysis of the sample space.

Key Words and Phrases

histogram bin size selection multiresolution analysis wavelets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Daly JE (1988) The construction of optimal histograms. Communications in Statistics — Theory and Methods 17:2921–2931zbMATHCrossRefMathSciNetGoogle Scholar
  2. Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics 61, PhiladelphiaGoogle Scholar
  3. Engel J (1994) A simple wavelet approach to nonparametric regression from recursive partitioning schemes. J. Multivariate Analysis 49:242–254zbMATHCrossRefMathSciNetGoogle Scholar
  4. Engel J (1995) Adaptive histograms based on Haar series. Unpublished manuscriptGoogle Scholar
  5. Freedman D, Diaconis P (1981) On the histogram as a density estimator:L 2 theory. Zeitsch. f. Wahrsch, 57:453–476zbMATHCrossRefMathSciNetGoogle Scholar
  6. Gasser T, Engel J, Seifert B (1993) Nonparametric curve estimation. In: Rao (Ed.) Handbook of statistics: Computational statistics. Northholland, Amsterdam: 423–465Google Scholar
  7. Jawerth B, Sweldens W (1993) An overview of wavelet based multiresolution analyses. Unpublished manuscriptGoogle Scholar
  8. Jones MC, Marron JS, Sheather SJ (1996) A brief survey of bandwidth selection for density estimation. J. Amer. Statist Assoc. 91:401–407zbMATHCrossRefMathSciNetGoogle Scholar
  9. Polasek W (1994) Explorative Datenanalyse. Einführung in die deskriptive Statistik. Springer, BerlinzbMATHGoogle Scholar
  10. Scott DW (1979) On optimal data-based histograms. Biometrika 66:605–610zbMATHCrossRefMathSciNetGoogle Scholar
  11. Scott DW (1985) Average shifted histogram: Effective nonparametric density estimators in several dimensions. Annals of Statistics 13:1024–1040zbMATHMathSciNetGoogle Scholar
  12. Scott DW (1992) Multivariate density estimation. Wiley, New YorkzbMATHGoogle Scholar
  13. Silverman BW (1985) Density estimation for statistics and data analysis. Chapman & Hall, LondonGoogle Scholar
  14. Tarter M, Kronmal R (1970) On multivariate density estimates based on orthogonal expansions. Annals of Math. Statistics 41:718–722MathSciNetGoogle Scholar
  15. Tarter M, Kronmal R (1970) On multivariate density estimates based on orthogonal expansions. Annals of Math. Statistics 41:718–722MathSciNetGoogle Scholar
  16. Terrell GR, Scott DW (1985) Oversmoothed nonparametric density estimation. J. Amer. Statist. Assoc. 80:209–214CrossRefMathSciNetGoogle Scholar
  17. Wand MP (1977) Data-based choice of histogram bin width. American Statistician 51:59–64CrossRefGoogle Scholar

Copyright information

© Physica-Verlag 1997

Authors and Affiliations

  • Joachim Engel
    • 1
  1. 1.PH LudwigsburgLudwigsburgGermany

Personalised recommendations