Skip to main content
Log in

Superconductivity in MgB2: Phonon modes and influence of carbon doping

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Following a brief overview, results of our investigations on phonon modes in MgB2, and superconducting transition in carbon doped MgB2 are presented. The superconducting transition temperature in MgB2 xCx as obtained from susceptibility and resistivity measurements is observed to decrease systematically from 39-4 K forx = 0 to 26 K forx = 0.5. It is shown the changes in lattice volume, as obtained from x-ray diffraction measurements, can account only partially for the observed decrease inT c . The observed variation ofT c with carbon content is seen to correlate with the Debye temperatures, obtained from an analysis of the resistivity data.

Investigation of the phonon modes in MgB2, through infrared absorption measurements indicate three modes at 410,475 and 560 cm-1. The former two are associated with the infrared active modes, and the third component is associated with the Raman mode, that gets activated due to disorder. A study of the temperature dependence of these modes indicates no changes across the superconducting transition. The mode at 560 cm-1 shows a significant hardening and a corresponding decrease in linewidth, with the lowering of temperature, that can been accounted in terms of anharmonicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen P B 1974Solid State Commun. 14: 937

    Article  Google Scholar 

  • An J M, Pickett W E 2001Phys. Rev. Lett. 87: 4366

    Article  Google Scholar 

  • Bohnen K P, Renker B 2001Phys. Rev. Lett. 87: 5771

    Article  Google Scholar 

  • Bordet P, Mezonar M, Nunez-Regueiro M D, Rogado N, Regan K A, Hayward M A, He T, Loureiro S M, Cava R J cond-mat/0106585

  • Bud’ko S L, Lapertot G, Petrovic C, Cunningham C E, Anderson N, Canfield P C 2001Phys. Rev. Lett. 86: 1877

    Article  Google Scholar 

  • Buzea T, Yamashita T 2002Superconductor Science and Technology (in press)

  • Canfield P C, Finnemore D K, Budko S L, Ostenson J E, Lapertot G, Cunningham C E, Petrovic C 2001Phys. Rev. Lett. 86: 2423

    Article  Google Scholar 

  • Chen X K, Konstantinovic M J, Irwin J C, Lawrie D D, Franck J P 2001Phys. Rev. Lett.,87: 157002

    Article  Google Scholar 

  • Goncharev A F, Strzhkin V I, Gregoryanz E, Hu J, Hemley R J, Mao H K, Lepertot G, Budko S L, Canfield P C 2001Phys. Rev. B: 1, September

    Google Scholar 

  • Hlinka J, Gregora I, Pokomy J, Plecenick A, Kus P, Satrapinsky L, Benacka S 2001Phys. Rev. B64: 140503 (R)

    Google Scholar 

  • Jemima Balaselvi S, Bharathi A, Reddy G L N, Sastry V S, Hariharan Y, Radhakrishnan T S 2001Proc. DAE Solid State Physics Symp. Bombay - (in press).

  • Jemima Balaselvi S, Bharathi A, Reddy G L N, Sastry V S, Hariharan Y, Radhakrishnan T S 2002Physica C - (communicated)

  • Jorgensen J D, Hinks D G, Short S 2002Phys. Rev. B64: 224522

    Google Scholar 

  • Kalavathi S, Bharathi A, Jemima Balaselvi S, Reddy G L N, Sastry V S, Hariharan Y, Radhakrishnan T S 2001Proc. DAE Solid State Physics Symposium, Bombay (in press)

  • Kang W N, Kim H J, Choi E M, Jung C U, Lee S 2001Science 292: 1521

    Article  Google Scholar 

  • Kong Y, Dolgov O V, Jepsen O, Andersen O K 2001Phys. Rev. B64: 0202501 (R)

    Google Scholar 

  • Khazakov S M, Angst M, Karpinski J cond-mat/0103350

  • Kortus J, Mazin I I, Balaschenko K D, Antropov V P, Boyer L L 2001Phys. Rev. Lett. 87: 4656

    Article  Google Scholar 

  • Liu A Y, Mazin I I, Kortus J 2001Phys. Rev. Lett. 87: 087005

    Article  Google Scholar 

  • Lorenz B, Meng R L, Chu C W 2001Phys. Rev. B64: 12507

    Google Scholar 

  • Martinho H, Martin A A, Rettori C, de Lima O F, Ribero R A, Avila M A, Pagiluso P G, Moreno N O, Sarrao J L cond-mat/0105204

  • Mehl J, Papaconstantopoulos D A, Singh D J cond-mat/0104548

  • Moritomo Y, Xu S cond-mat/0104568

  • Nagamutsu J, Nagakawa N, Muranaka T, Zenitani Y, Akimitsu J 2001Nature (London) 410: 63

    Article  Google Scholar 

  • Osborne R, Goremychkin E A, Kolesnikov A I, Hinks D G 2001Phys. Rev. Lett. 87: 17005

    Article  Google Scholar 

  • Paranthaman M, Thompson J R, Christen D K 2001Physica C 355: 5

    Article  Google Scholar 

  • Sood A K, Arora A K, Umadevi V, Venkataraman G 1981Pramana 16: 1

    Article  Google Scholar 

  • Slusky J,et al 2001Nature (London) 410: 343

    Article  Google Scholar 

  • Sundar C S, Premila M, Sairam T N 2001Proc. DAE Solid State Physics Symposium, Bombay (in press)

  • Takenobu T, Ito T, Chi D H, Prassides K, Iwasa Y cond-mat/0103241

  • Tu J J, Carr G L, Perebeinos V, Homes C C, Strongin M, Allen P B, Kang W N, Choi E M, Kim H J, Lee S K cond-Mat./0107349

  • Yildrim T 2001Phys. Rev. Lett. 87: 370001

    Google Scholar 

  • Zeyher R, Zwicknagel G 1990Z.Phys. B78: 175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharathi, A., Hariharan, Y., Balaselvi, J. et al. Superconductivity in MgB2: Phonon modes and influence of carbon doping. Sadhana 28, 263–272 (2003). https://doi.org/10.1007/BF02717136

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02717136

Keywords

Navigation