Skip to main content
Log in

Physical metallurgy of nickel aluminides

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

A description of the important physical metallurgy aspects of N13Al and NiAl encompassing structure, crystallographic defects, slip systems and phase stability has been presented in this article. The microstructures generated in the two alloys by conventional as well as novel processing techniques have been discussed. The effect of alloying additions on the microstructure has been enumerated. Besides description of the aforementioned physical metallurgy aspects, an important purpose of this review is to focus on the reasons of brittleness in the two alloys and means of alleviating this problem primarily by alloying. The effect of alloying on the slip behaviour has also been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki K, Izumi O 1979 Flow and fracture behaviour of Ni3(Al-Ti) single crystals tested in tension.J. Mater. Sci. 14: 1800–1806

    Article  Google Scholar 

  • Ball A 1969 Unusual lattice defects in non-stoichiometric NiAl.Philos. Mag. 30: 113–124

    Article  Google Scholar 

  • Barrett C, Massalski T B 1980 The structure of metals and alloys.Structure of metals 3rd edn (New York: Pergamon) chap. 10, pp. 223–269

    Google Scholar 

  • Bowman R R, Noebe R D, Raj S V, Locci I E 1992 Correlation of deformation mechanisms with the tensile and compressive behaviour of NiAl and NiAl(Zr) intermetallic alloys.Metall. Trans. A23: 1493–1508

    Google Scholar 

  • Busso E P, Mcclintock F A 1994 Mechanisms of cyclic deformation of NiAl single crystals at high temperatures.Acta Metall. Mater. 42: 3263–3275

    Article  Google Scholar 

  • Cahn R W, Siemers P A, Geiger J E, Bardhan P 1987 The order-disorder transformation in Ni3Al and Ni3 Al-Fe alloys -I. Determination of the transition temperatures and their relation to ductility.Acta Metall. 35: 2737–2751

    Article  Google Scholar 

  • Cotton J D, Kaufman M J, Noebe R D 1991 Constitution of pseudobinary hypoeutectic Β-NiAl + α-V alloys.Sd. Metall. Mater. 25: 2395–2398

    Article  Google Scholar 

  • Darolia R 1991 NiAl Alloys for high-temperature structural applications.J. Met. 43(3): 44–49

    Google Scholar 

  • Darolia R, Lahrman D, Field R 1992 The effect of iron, gallium and molybdenum on the room temperature tensile ductility of NiAl.Sd. Metall. Mater. 26: 1007–1012

    Article  Google Scholar 

  • Dey G K, Tewari R, Roa P, Wadekar S L, Mukhopadhyay P1993 Precipitation hardening in nickel copper alloy monel K500.Metall. Trans. A24: 2709–2719

    Google Scholar 

  • Dey G K, Kulkarni U D, Batra I S, Banerjee S 1994 LASER surface alloying of nickel by molybdenum and aluminium: Microstructure studies.Acta Metall. 42: 2973–2981

    Article  Google Scholar 

  • Dey G K, Arya A, Sekhar J A 2000 Micropyretic synthesis of NiAl containing Ti and B.J. Mater. Res. 15: 63–76

    Article  Google Scholar 

  • Dey G K, Sekhar J A 1997 Micropyretic synthesis of tough NiAl alloys.Metall. Mater. Trans. B28: 905

    Google Scholar 

  • Dey G K, Sekhar J A 1998 Micropyretic synthesis of nickel aluminides.Trans. Indian Inst. Met. 50: 79–89

    Google Scholar 

  • Dey G K, Sekhar J A 1999 Micropyretic synthesis studies of Ni-, Al-, Ti-, and Nb-containing alloys.Metall. Mater. Trans. B30: 171–188

    Google Scholar 

  • Dieter G E 1988 Elements of the theory of plasticity.Mechanical metallurgy(London: McGraw-Hill) pp 76–79

    Google Scholar 

  • Dollar M, Dymek S, Hwang S J, Nash P 1993 The Occurrence of (110) slip in MALMetall. Trans. A24: 1993–2000

    Google Scholar 

  • Fan J, Collins G S 1990 Point defects in NiAl near the equiatomic composition.Hyper. Int. 60: 655–658

    Article  Google Scholar 

  • Farkas D, Pasianot R, Savino E J, Miracle D B 1991 Comparison of TEM observations with dislocation core structure calculations in B2 ordered compounds, in high temperature ordered intermetallic alloys IV.Mater. Res. Symp. Proc. 213:223–228

    Google Scholar 

  • Field R D, Lahrman D F, Darolia R 1991a Slip systems in (001) oriented MAI single crystals.Acta Metall. Mater. 39: 2951–2959

    Article  Google Scholar 

  • Field R D, Lahrman D F, Darolia R 1991b The effect of alloying on slip systems in (001) oriented NiAl single crystals.Acta. Metall. Mater. 39: 2961–2969

    Article  Google Scholar 

  • Fraser H L, Loretta M H, Smallman R E, Wasilewski R J 1973 Oxidation-induced defects in NiAl.Philos. Mag. 28: 639–650

    Article  Google Scholar 

  • Fu C L, Yoo M H 1991 First-principles investigation of mechanical behaviour of B2 type aluminides: FeAl and NiAl, in high temperature ordered intermetallic alloys IV.Mater. Res. Soc. Symp. Proc. 213:667–672

    Google Scholar 

  • George E P, Liu C T 1990 Brittle fracture and grain boundary chemistry of micro-alloyed NiAl.J. Mater. Res. 5: 754.762

    Google Scholar 

  • Hong T, Freeman A J 1991 Effect of antiphase boundaries on the electronic structure and bonding character of intermetallic systems: NiAl.Phys. Rev. B43: 6446–6458

    Google Scholar 

  • Hughes T, Lautenschlager E P, Cohen J B, Brittain J O 1971 X-ray diffraction investigation ofΒ’ NiAl alloys.J. Appl. Phys. 42: 3705–3716

    Article  Google Scholar 

  • Jacobi H, Vassos R, Engell H J 1970 Electrical properties of Β-phase NiAl.J. Phys. Chem. Sol. 30: 1261–1271

    Article  Google Scholar 

  • Jayaram R, Miller M K 1994 An atom probe study of grain boundary and matrix chemistry in microalloyed NiALActa. Metall. Mater. 42: 1561–1572

    Article  Google Scholar 

  • Kayseer W A, Laag R, Murray J C, Petzow G E 1991 Improvement of P/M-NiAl by Ti and Nb additions.Int. J. Powder Metall. 27: 43–49

    Google Scholar 

  • Kim J T 1990On the slip behaviour and surface film effects in B2 ordered single crystals. Ph. D. thesis, University of Michigan, Ann Arbor, MI

    Google Scholar 

  • Kohmoto H, Shyue J, Aindow M, Fraser H L 1993 Observation of metastable B2 phase in rapidly solidified ribbons of Nb-Al alloys.Scr. Metall. Mater. 29: 1271–1274

    Article  Google Scholar 

  • Kubaschewski O 1958 The heat of formation in the system Al + Ni + Ti.Trans.Faraday Soc. 54: 814–820

    Article  Google Scholar 

  • Lahrman D F, Field R D, Darolia R 1991 The effect of strain rate on the mechanical properties of single NiA1, in high temperature ordered intermetallic alloys IV.Mater. Res. Symp. Proc. 213: 603

    Google Scholar 

  • Law C C, Blackburn M J 1987 Rapidly solidified lightweight durable disk material. Final Technical Report AFWAL-TR-87-4102, United Technologies Corp, Pratt and Whitney Group, West Palm Beach, FL

    Google Scholar 

  • Levit V I, Bul I A, Hu J, Kaufmann M J 1996 High tensile elongation of Β-MA1 single crystals at 293 K.Scr. Mater. 34: 1925–1930

    Article  Google Scholar 

  • Liu C T, White C L, Horton J A 1985 Effect of boron on grain boundaries in M3A1.Acta. Metall. 33: 213–229

    Article  Google Scholar 

  • Liu C T 1992 Environmental embrittlement and grain boundary fracture in N13ALScr. Metall. 27: 25–28

    Article  Google Scholar 

  • Lloyd C H, Loretta H M 1970 Dislocations in extruded Β′-NiAl.Phys. Status Solidi (a) 39: 163–170

    Article  Google Scholar 

  • Locci I E, Noebe R D, Moser J A, Lee D S, Nathal M V 1989 Processing and microstructure of melt spun MAI alloys, in high temperature ordered intermetallic alloys III.Mater. Res. Soc. Symp. Proc. 133: 639–646

    Google Scholar 

  • Loretta M H, Wasilweski R J 1971 Slip systems in MAI single crystals at 300 K and 77 K.Philos. Mag.23: 1311–1328

    Article  Google Scholar 

  • Mori H, Fujita H, Tendo M, Fujita M 1984 Amorphous transition in intermetallic compounds induced by electron irradiation.Scr. Metall. 18: 783–788

    Article  Google Scholar 

  • Moore J J, Feng H J 1995 Combustion synthesis of advanced materials, Part I. Reaction parameters.Prog. Mater. Sci. 39: 243–273

    Article  Google Scholar 

  • Neumann J P, Chang Y A, Lee C M 1976 Thermodynamics of intermetallic phases with the triple-defect B2 structure.Acta Metall. 24: 593–604

    Article  Google Scholar 

  • Noebe R D, Bowman R R, Nathal M V 1993 Review of the physical and mechanical properties of the B2 compound NiAl.Int. Mater. Rev. 38: 193–232

    Google Scholar 

  • Noebe R D, Bowman R R, Nathal M V 1997 Physical and mechanical metallurgy of NiAl.Physical metallurgy and processing of intermetallic compounds (eds) N S Stoloff, V K Sikka (New Delhi: CBS) pp 212–296

    Google Scholar 

  • Parthasarathi A, Fraser H L 1984 The annealing of vacancy defects in Β-NiAl. I — Vacancy loop growth in As-grown single crystals annealed in ultra-high vacuum.Philos. Mag. A50 89–100

    Google Scholar 

  • Pascoe R T, Newey C W A 1968 Deformation modes of the intermediate phase NiAl.Phys. Status Solidi (a) 29: 357–366

    Article  Google Scholar 

  • Pearson W B 1992Handbook of crystallographic data for intermetallic phases (eds) P Villars, L D Calvert (Materials Park, OH: ASM) pp 1038–1039

    Google Scholar 

  • Pope D P, Ezz S S 1984 Mechanical properties of Ni3Al and nickel-base alloys with high volume fraction of γ′.Int. Met. Rev. 23: 136–167

    Google Scholar 

  • Rusovic N, Warlimont H 1977 The elastic behaviour of Β2-NiAl.Phys. Status Solidi (a) 44: 609–619

    Article  Google Scholar 

  • Rusovic N, Warlimont H 1979 Youngs’s modulus of Β2-NiAl alloys.Phys. Status Solidi (a) 53: 283–288

    Article  Google Scholar 

  • Sekhar J A, Dey G K, Carr D, Gupta V 1996 Combustion synthesis of niobium intermetallic s and composites. Second Technical Report AFOSR-F49620-93-1-0200, Air Force Office of Scientific Research, Int. Center for Micropyretics, University of Cincinnati, Cincinnati, OH, pp 110–125

    Google Scholar 

  • Singleton M F, Murray J L, Nash P 1986Al-Ni, Binary alloy phase diagrams (ed.) T B Massalski, (Metals Park, OH: Am. Soc. Met.) pp 181–184

    Google Scholar 

  • Stockinger C T, Neumann J P 1970 Determination of order in the intermetallic phase Ni3Al as a function of temperature.J. Appl. Crystallogr. 3: 32–38

    Article  Google Scholar 

  • Stoloff N S, Liu C T 1997 The physical and mechanical metallurgy of N13A1 and its alloys.Physical metallurgy and processing of intermetallic compounds (eds) N S Stoloff, V K Sikka (New Delhi: CBS) pp 159–211

    Google Scholar 

  • Sumiyama K, Hirose Y, Nakamura Y 1989 Magnetic and electrical properties of nonequilibrium Ni-Al produced by vapour quenching.Phys. Status Solidi 114: 693–704

    Article  Google Scholar 

  • Takasugi T, Izumi O, Mashashi N 1985 Electronic and structural studies of grain boundary strength and fracture in Ll2 ordered alloys — II. On the effect of third elements in BNi3Al alloys.Acta Metall. 33: 1259–1269

    Article  Google Scholar 

  • Takeuchi S, Kuramoto E 1973 Temperature and orientation dependence of the yield stress in Ni3Ga single crystals.Acta Metall. 21: 415–424

    Article  Google Scholar 

  • Taylor A, Doyle N J 1972 Further studies on the nickel-aluminium system. I. The Β-NiAl andδ Ni2Al3 phase fields.J. Appl. Crystallogr. 5: 201–209

    Article  Google Scholar 

  • Tisone T C, Marshall G W, Brittain J O 1968 Prismatic dislocations inΒ′ NiAl.J. Appl. Phys. 39: 3714–3717

    Article  Google Scholar 

  • Veyssiere P 1984 Weak-beam study of dislocations moving on {100} planes at 800‡C in Ni3Al.Philos. Mag. A50: 189–203

    Google Scholar 

  • Veyssiere P, Noebe R 1992 Weak beam study of (111) superlattice dislocations in NiAl.Philos. Mag. A65: 1–13

    Google Scholar 

  • Wasilewski R J 1967 Thermal vacancies in NiAl.Acta Metall. 15: 1757–1759

    Article  Google Scholar 

  • Wasilewski R J 1966 Elastic constants and young’s modulus of NiAl.Trans. AIME 236: 455–457

    Google Scholar 

  • Zaluzec N J, Fraser H L 1974 The origin of dislocations withb = (110) in single crystals of Β-NiAl compressed along (001) at elevated temperatures.Scr. Metall. 8: 1049–1054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, G.K. Physical metallurgy of nickel aluminides. Sadhana 28, 247–262 (2003). https://doi.org/10.1007/BF02717135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02717135

Keywords

Navigation