Skip to main content
Log in

Mechanical behaviour of aluminium-lithium alloys

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Aluminium-lithium alloys hold promise of providing a breakthrough response to the crying need for lightweight alloys for use as structurals in aerospace applications. Considerable worldwide research has gone into developing a range of these alloys over the last three decades. As a result, substantial understanding has been developed of the microstructure-based micromechanisms of strengthening, of fatigue and fracture as well as of anisotropy in mechanical properties. However, these alloys have not yet greatly displaced the conventionally used denser Al alloys on account of their poorer ductility, fracture toughness and low cycle fatigue resistance. This review aims to summarise the work pertaining to study of structure and mechanical properties with a view to indicate the directions that have been and can be pursued to overcome property limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Actam C M 1981 Overview of DC casting. InAluminium-lithium alloys;Proc. First Int. Conf. Aluminium-Lithium Alloys (eds) T H Sanders, E A Starke (Warrendale, PA: AIME) pp 37–48

    Google Scholar 

  • Balabhaskaran K, Satya Prasad K, Vijaya Singh, Gokhale A A 1999 (unpublished work)

  • Balmuth E S 1994 The status of Al-Li alloys, in aluminium alloys: Their physical and mechanical properties. InProc. 4th Int. Conf. Aluminium Alloy s (eds) T H Sanders, E A Starke (Atlanta: Georgia Inst. Technol.) pp 82–89

    Google Scholar 

  • Balmuth E S, Chellman D J 1987 Alloy design for overcoming the limitations of Al-Li alloy plate.J. Phys. (Paris) 48:c3.293-c3.299

    Google Scholar 

  • Banerjee S, Ayra A, Das G P 1997 Foundation of an ordered intermetallic phase from a disordered solid solution — A study using first principles calculation in Al-Li alloys.Acta Metall. 45: 601–609

    Google Scholar 

  • Bavarian B, Becker J, Parikh S N, Zamanzadeh M 1989 Localised corrosion of 2090 and 2091 Al-Li alloys. InProc. 5th Int. Conf. Aluminium-Lithium Alloys (eds) T H Sanders, E A Starke (Birmingham, UK: Mater. Components Eng. Publ.) vol. 2, pp 1227–1236

    Google Scholar 

  • Birch M E J, Cowell A J 1987 Titanium-carbon-aluminium: A novel grain refiner for aluminium-lithium alloys.J. Phys. (Paris) 48: c3.103-c3.108

    Google Scholar 

  • Bird R K, Discus D L, Fridyander I N, Sandier V S 2000 Al-Li alloy 1441 for fuselage applications.Mater. Sci. Forum 331–337: 907–912

    Google Scholar 

  • Broek D 1986Elementary engineering fracture mechanics (Dordrecht: Martinus Nijhoff)

    Google Scholar 

  • Chakravorty C R 1988Studies on the characteristics of cast binary aluminium-lithium alloys. Doctoral thesis, Indian Institute of Technology, Kharagpur

    Google Scholar 

  • Chen C Q, Li H X 1989 Crack path profiles of Al-Li single crystals under monotonic and cyclic loading. InAluminium-lithium alloys (eds) T H Sanders, E A Starke (Birmingham, UK: Mater. Components Eng. Publ.) vol. 2, pp 973–981

    Google Scholar 

  • Chen D L, Chaturvedi M C 2000 Near-threshold fatigue crack growth behaviour of 2195 aluminium-lithium alloy — prediction of crack propagation direction and influence of stress ratio.Metall. Mater. Trans. A31: 1531–1541

    Article  Google Scholar 

  • Coyne E J, Sanders T H, Starke E A 1981 The effect of microstructure and moisture on the low cycle fatigue and fatigue crack propagation of two Al-Li-X alloys. InAluminium-lithium alloys (eds) T H Sanders, E A Starke (Warrendale, PA: Metall. Soc. AIME) pp 293–305

    Google Scholar 

  • Clarke E R, Gillespie P, Page F M 1986 Heat treatments of Li/Al alloys in salt baths. InAluminium-lithium alloys (eds) C Backer, P J Gregson, S J Harris, C J Peel (London: Ins. Metals) vol. 3, pp 159–163

    Google Scholar 

  • Csontos A A, Starke E A 2000 The effect of processing and micro structure development on the slip and fracture behaviour of the 2.1 wt.% Li AF/C-489 and 1–8 wt. % Li AF/C-458 Al-Li-Cu-X alloys.Metall. Mater. Trans. A31: 1965–1976

    Article  Google Scholar 

  • Cui J, Fu Y, Li N, Sun J, He J, Dai Y 2000 Study on fatigue crack propagation and extrinsic toughening of an Al-Li alloy.Mater. Sci. Eng. A281: 126–131

    Google Scholar 

  • Dhers J, Driver J, Foundeux A 1986 Cyclic deformation of binary Al-Li alloys. InAluminium-lithium alloys (eds) C Baker, P J Gregson, S J Harris, C J Peel (London: Inst. Met.) vol. 3, pp 233–238

    Google Scholar 

  • Edwards M R, Stoneham V E 1987 The fusion welding of Al-Li-Cu-Mg 8090 alloy. InJ. Phys. (Paris) 48: c3.293-c3.299

    Google Scholar 

  • Ekvall J C, Rhodes J E, Wald G G 1982Methodology for evaluating weight savings from basic material properties ASTM STP 761 (Philadelphia, PA: Am. Soc. Testing Mater.) pp 328–341

    Google Scholar 

  • Engler O, Sachot E, Ehrstrom J C, Reeves A, Shahani R 1996 Recrystallisation and texture in hot deformed aluminium alloy 7010 thick plates.Mater. Sci. Technol. 12: 717–729

    Google Scholar 

  • Eswara Prasad N 1993In-plane anisotropy in the fatigue and fracture properties of quaternary Al-Li-Cu-Mg alloys. Doctoral thesis, Banaras Hindu University, Varanasi

    Google Scholar 

  • Eswara Prasad N, Kamat S V 1995 Fracture behaviour of quaternary Al-Li-Cu-Mg alloys under mixed-mode I/III loading.Metall. Mater. Trans. A26: 1823–1833

    Google Scholar 

  • Eswara Prasad N, Malakondaiah G 1992 Anisotropy in the mechanical properties of quaternary Al-Li-Cu-Mg alloys.Bull. Mater. Sci. 15: 297–310

    Google Scholar 

  • Eswara Prasad N, Rama Rao P 2000 Low cycle fatigue resistance in Al-Li alloys.Mater. Sci. Technol. 16: 408–426

    Google Scholar 

  • Eswara Prasad N, Malakondaiah G, Raju K N, Rama Rao P 1989 Low cycle fatigue behaviour of an Al-Li alloy. InAdvances in fracture research (eds) K Salama, K Ravi-Chander, D M R Taplin, P Rama Rao (New York, PA: Pergamon) pp 1103–1112

    Google Scholar 

  • Eswara Prasad N, Satya Prasad K, Malakondaiah G, Banerjee D, Gokhale A A, Sundararajan G, Chakravorty C R 1991 Micro structure and mechanical properties of 1420 Al-Mg-Li alloy sheet product. DMRL Tech. Report No. 91128, Defence Metallurgical Research Laboratory, Hyderabad

    Google Scholar 

  • Eswara Prasad N, Malakondaiah G, Rama Rao P 1992 Strength differential in Al-Li alloy 8090.Mater. Sci. Eng. A150: 221–229

    Google Scholar 

  • Eswara Prasad N, Kamat S V, Malakondaiah G 1993a Effect of crack deflection and branching onR-carve behaviour of an Al-Li alloy 2090 sheet.Int. J. Fracture 61: 55–69

    Article  Google Scholar 

  • Eswara Prasad N, Kamat S V, Prasad K S, Malakondaiah G, Kutumbarao V V 1993b In-plane anisotropy in fracture toughness of an Al-Li 8090 plate.Eng. Fracture Mech. 46: 209–223

    Article  Google Scholar 

  • Eswara Prasad N, Paradkar A G, Malakondaiah G, Kutumbarao V V 1994a An analysis based on plastic strain energy for bilinearity in Coffin-Manson plots in an Al-Li alloy.Scr. Metall. Mater. 30: 1497–1502

    Article  Google Scholar 

  • Eswara Prasad N, Kamat S V, Prasad K S, Malakondaiah G, Kutumbarao V V 1994b Fracture toughness of quaternary Al-Li-Cu-Mg alloy under mode I, mode II and mode III loading conditions.Metall. Mater. Trans. A25: 2439–2452

    Google Scholar 

  • Eswara Prasad N, Prasad K S, Kamat S V, Malakondaiah G 1995 Influence of microstructural features on the fracture resistance of aluminium-lithium alloy sheets.Eng. Fracture Mech. 51: 87–96

    Article  Google Scholar 

  • Eswara Prasad N, Malakondaiah G, Kutumbarao V V, Rama Rao P 1996 In-plane anisotropy in low cycle fatigue properties of and bilinearity in Coffin-Manson plots for quaternary Al-Li-Cu-Mg 8090 alloy plate.Mater. Sci. Technol. 12: 563–577

    Google Scholar 

  • Eswara Prasad N, Malakondaiah G, Kutumbarao V V 1997 On the micromechanisms responsible for bilinearity in fatigue power-law relationships in aluminium-lithium alloys.Scr. Mater. 37: 581–587

    Article  Google Scholar 

  • Fragomemi J M, Hillberry B M, Sanders T H 1989 An investigation of thed’ particle strengthening mechanisms and microstructure for an Al-Li-Zr alloy.Aluminium-lithium alloys (eds) T H Sanders, E A Starke (Birmingham: Mater. Components Eng. Publ.) vol. 2, pp 837–848

    Google Scholar 

  • Flower H M, Gregson P J 1987 Critical assessment: Solid state phase transformations in aluminium alloys containing lithium.Mater. Sci. Technol. 3: 81–90

    Google Scholar 

  • Fridlyander I N, Shiryaeva N V, Ambortsumyan S M, Gorokhova T A, Gadidullin R M, Sidorov N G, Sorokin N A, Kuznetsov A N 1967 Aluminium based alloy.British Patent No. 1, 172, 736

    Google Scholar 

  • Fridlyander I N 1989 Aluminium-lithium weldable alloy 1420. InAluminium-lithium alloys (eds) T H Sanders, E A Starke (Birmingham: Mater. Component Eng. Publ.) vol. 3, pp 1359–1364

    Google Scholar 

  • Fridlyander J N, Kolobnev N I, Khokhlatova L B, Lovchelt E, Winkler P J, Pfannenmuller T 1998 Properties of New Al-Li-Mg Alloy. InAluminium alloys: Their physical and mechanical properties (eds) T Sata, T Kumai, Y Murakami (Tokyo: Japan Inst. Metals) vol. 2, pp 2055–2060

    Google Scholar 

  • Fridlyander J N, Kolobnev N I, Khokhlatova L B, Tarasenko L V, Zhegina I P 1998b Study of the structure and properties of 1420 alloy modifications for sheets. InAluminium alloys: Their physical and mechanical properties (eds) T Sata, T Kumai, Y Murakami (Tokyo: Japan Inst. Metals) vol. 3, pp 2055–2060

    Google Scholar 

  • Gokhale A A, Ramachandran T R 1990 Development of aluminium-lithium alloys.Indian J. Technol. 28: 235–246

    Google Scholar 

  • Gokhale A A, Satya Prasad K, Vikas Kumar, Chakravorty C R, Leschiner L N, Mozharovsky S M, Fridlyander I N 1994a An aluminium-lithium alloy with improved in-plane anisotropy. InAluminium alloys: Their physical and mechanical properties (eds) T H Sanders, E A Starke (Georgia, Atlanta: Georgia Inst. Technology) vol. 2, pp 428–435

    Google Scholar 

  • Gokhale A A, Vijaya Singh, Eswara Prasad N, Chakravorty C R, Prasad Y V R K 1994b Processing maps for Al-Li alloys. InAluminium alloys: Their physical and mechanical properties (eds) T H Sanders, E A Starke (Georgia, Atlanta: Georgia Inst. of Technol.) pp 242–249

    Google Scholar 

  • Gokhale A A, Singh V, Prasad K S, Eswara Prasad N, Chakravorty C R 1998 Development of high specific strength aluminium alloys for aerospace structural applications.Proc. Int. Conf. Aluminium, INCAL ’98 (eds) D H Sastry, S Subramanian, K S S Murty, K P Abraham (Bangalore, India: Aluminium Assoc. India) vol. 2, pp 101–106

    Google Scholar 

  • Gokhale A A, Singh V, Varma V K 2000 (unpublished work)

  • Gregson P J 1984 Doctoral thesis, University of London, London

    Google Scholar 

  • Gregson P J, Flower H M 1985 Microstructural control of toughness in aluminium-lithium alloys.Acta Metall. 33: 527–537

    Article  Google Scholar 

  • Gregson P J, Flower H M, Tete C N J, Mukhopadhyay A K 1986 Role of vacancies in precipitationof δ′ andS phases in Al-Li-Cu-Mg alloys.Mater. Sci. Technol. 2: 349–353

    Google Scholar 

  • Grimes R 1990 Aluminium-lithium based alloys.Encyclopedia materials science engineering (eds) R W Cahn (New York: Pergamon) vol. 2, pp 667–678

    Google Scholar 

  • Grimes R, Davis T, Saxty H J, Fearon J E 1987 Progress to aluminium-lithium semi-fabricated products.J. Phys. (Paris) 48: c3.11-c3.24

    Google Scholar 

  • Guvenilir A, Stock S R 1998 High resolution computed topography and implications for fatigue crack closure modelling.Fatigue Fracture Eng. Mater. Struct. 21: 439–450

    Article  Google Scholar 

  • Gysler A, Crookes R, Starke E A 1981 A comparison of microstructure and tensile properties of P/M and I/M Al-Li-X alloys. InAluminium-lithium alloys (eds) T H Sanders, E A Starke (Warrendale, PA: Metall. Soc. AIME) pp 263–291

    Google Scholar 

  • Hales S J, Hafley R A 1998 Texture and anisotropy in Al-Li alloy 2095 plate and near-net-shape extrusions.Mater. Sci. Eng. A257: 153–164

    Google Scholar 

  • Halford G R 1966 The energy required for fatigue.J. Mater. 1: 3–29

    Google Scholar 

  • Harris S J, Noble B, Dinsdale K 1984 Effect of composition and heat treatment on strength and fracture characteristics of Al-Li-Mg alloys. InAluminium-lithium alloys (eds) T H Sanders, E A Starke (Warrendale, PA: Metall. Soc. AIME) pp 219–233

    Google Scholar 

  • Heikkenen H C, Lin F S, Starke E A 1981 The low cycle fatigue behaviour of high strength 7XXX type aluminium alloys in the T7351 condition.Mater. Sci. Eng. 51: 17–23

    Article  Google Scholar 

  • Inoue A, Kawamura Y, Kimura H M, Mano H 2001 Nanocrystalline Al-based bulk alloys with high strength above 1000 MPa.Mater. Sci. Forum 360–362: 129–136

    Article  Google Scholar 

  • Jata K V, Starke E A 1986 Fatigue crack growth and fracture toughness behaviour of an Al-Li-Cu alloy.Metall. Trans. A17: 1011–1026

    Google Scholar 

  • Jata K V, Hopkins A K, Rioja R J 1996 The anisotropy and texture of Al-Li alloys.Mater. Sci. Forum 217–222: 647–652

    Google Scholar 

  • Jata K V, Panchandeeswaran S, Vasudevan A K1998Evolution of texture, microstructure and mechanical property anisotropy in an Al-Li-Cu alloy.Mater. Sci. Eng. A257: 37–46

    Google Scholar 

  • Jha S C, Sanders T H, Dayananda M A 1987 Grain boundary precipitate free zones in Al-Li alloys.Acta Metall. 35: 473–482

    Article  Google Scholar 

  • Kamat S V, Eswara Prasad N 1990 Mixed-mode analysis of crack deflection and its influence onR-carve behaviour of aluminium-lithium 8090 alloy sheets.Scr. Metall. Mater. 24: 1907–1912

    Article  Google Scholar 

  • Kamat S V, Eswara Prasad N, Malakondaiah G 1991 Comparison of mode I and mode II fracture toughness of an 8090 Al-Li alloy.Mater. Sci. Eng. A149: L1-L3

    Google Scholar 

  • Khireddine D, Rahouadj R, Clavel M 1989 The influence of δ′ andS′ precipitation on low cycle fatigue behaviour of an aluminium alloy.Acta Metall. 37: 191–201

    Article  Google Scholar 

  • Kim N J, Bye R L, Das S K 1987 Recent developments in rapidly solidified aluminium-lithium alloys. InAluminium-lithium alloys: Design, development and applications update (eds) R J Kar, S P Agrawal, W E Quist (Metals Park, OH: Am. Soc. Metals Int.) pp 63–76

    Google Scholar 

  • Kulkarni G J, Banerjee D, Ramachandran T R 1989 Physical metallurgy of aluminium-lithium alloys.Bull. Mater. Sci. 12: 325–340

    Google Scholar 

  • Lagenbeck S L, Sakata I F, Ekvall J C, Reinan R A 1987 Design considerations of new materials for aerospace vehicles. InAluminium-lithium alloys: design, development and applications update (eds) R J Kar, S P Agrawal, W E Quist (Metals Park, OH Am. Soc. Metals Int.) pp 293–314

    Google Scholar 

  • Lavernia E J, Srivatsan T S, Mohammed F A 1990 Review — strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys.J. Mater. Sci. 25: 1137–1158

    Google Scholar 

  • Lewandowski J J, Holroyd N J H 1990 Intergranular fracture of Al-Li alloys: Effects of aging and impurities.Mater. Sci. Eng. A123: 219–227

    Google Scholar 

  • Lewis R D, Webster D, Palmer I G 1978 Technical Report AFML-TR-78, DARPA Order No. 3417, Lockheed Missiles and Space Company, Palo Alto, CA, p. 102

    Google Scholar 

  • Lin F S, Starke E A 1979 The effect of copper content and degree of recrystallisation on the fatigue resistance of 7XXX type aluminium alloys: I. Low cycle corrosion fatigue.Mater. Sci. Eng. 39: 27–41

    Article  Google Scholar 

  • Lin F S, Chakravorty S B, Starke E A 1982 Microstructure-property relationships of two Al-3Li-2Cu-0-2XCd alloys.Metall. Trans. A13: 401–410

    Google Scholar 

  • Lynch S P 1991 Fracture of 8090 Al-Li plate-I. Short transverse fracture toughness.Mater. Sci. Eng. A136: 25–43

    Google Scholar 

  • Madhusudhan Reddy G 1998Studies on the application of pulsed current and arc oscillation techniques on aluminium-lithium alloy welds. Doctoral thesis, Indian Institute of Technology, Chennai

    Google Scholar 

  • Madhusudhan Reddy G, Gokhale A A 1993 Gas tungsten arc welding of AA 8090 Al-Li alloy.Trans. Indian Inst. Metals 46: 21–31

    Google Scholar 

  • Madhusudhan Reddy G, Gokhale A A, Prasada Rao K 1998a Effect of filler metal composition on the weldability of Al-Li alloy welds.Sci. Technol. Welding Joining 3: 151–158

    Google Scholar 

  • Madhusudhan Reddy G, Gokhale A A, Prasada Rao K 1998b Optimisation of pulse frequency in pulsed current gas tungsten arc welding of aluminium-lithium alloy weld.Mater. Sci. Technol. 14: 61–68

    Google Scholar 

  • Masumoto T, Inoue A 1998 Bulk amorphous and nanocrystalline Al-based alloys with high strength. InAluminium alloys: Their physical and mechanical properties (Tokyo: Japan Inst. of Light Metals)

    Google Scholar 

  • McDarmaid D S, Peel C J 1989 Aspects of damage tolerance in 8090 sheet. InAluminium-lithium alloys (eds) T H Sanders, E A Starke (Birmingham: Mater. Components Eng. Publ.) vol. 2, pp 993–1002

    Google Scholar 

  • McEvily A J, Ritchie R O 1998 Crack closure and the fatigue crack propagation threshold as a function of load ratio.Fatigue Fracture Eng. Mater. Struct. 21: 847–855

    Article  Google Scholar 

  • McMaster F J, Tabrett C P, Smith D J 1998 Fatigue crack growth rates in Al-Li alloy 2090: Influence of orientation, sheet thickness and specimen geometry.Fatigue Fracture Eng. Mater. Struct. 21: 139–150

    Article  Google Scholar 

  • Meng L, Zheng X L, Tu J P, Liu M S 1998 Effects of deleterious impurities and cerium modification on intrinsic and extrinsic toughening levels of Al-Li based alloys.Mater. Sci. Technol. 14: 585–591

    Google Scholar 

  • Meng L, Tian L, Zheng X L 2000 Notch strength and stress concentration sensitivity of alloy 2090 with various cerium contents.J. Mater. Sci. 35: 1481–1486

    Article  Google Scholar 

  • Meyer P, Cans Y, Ferton D, Reboul M 1987 The metallurgy of industrial Al-Li alloys.J. Phys. (Paris) 48:c3.131-c3.138

    Google Scholar 

  • Miller W S, White J, Reynolds M A, McDermaid D S, Starr G M 1987 Aluminium-lithium-coppermagnesium-zirconium alloys with high strength and high damage tolerance-solving the perceived dichotomy,J. Phys. (Paris) 48: c3.131-c3.138

    Google Scholar 

  • Miura Y, Yusu K, Aibe S, Furukawa M, Nemoto M 1989 Formation and stability of orowan loops in Al-Li single crystals. InAluminium-lithium alloys (eds) T H Sanders, E A Starke (Birmingham: Mater. Components Eng. Publ.) pp 827–836

    Google Scholar 

  • Mukhopadhyay A K 1988 Doctoral thesis, University of London, London

    Google Scholar 

  • Mukhopadhyay A K, Flower H M, Steppard T 1990a Development of micro structure in AA 8090 alloy produced by extrusion processing.Mater. Sci. Technol. 6: 461–468

    Google Scholar 

  • Mukhopadhyay A K, Flower H M, Steppard T 1990b Development of mechanical properties in AA 8090 alloy produced by extrusion processing.Mater. Sci. Technol. 6: 611–620

    Google Scholar 

  • Noble B, Harris S J, Dinsdale K 1982 Yield characteristics of aluminium-lithium alloys.Metall. Sci. 16: 425–430

    Article  Google Scholar 

  • Oh Y J, Lee B S, Kwon S C, Hong J H, Nam S W 1999 Low cycle fatigue crack initiation and break in strain-life curve of Al-Li 8090 alloy.Metall. Mater. Trans. A30: 887–890

    Article  Google Scholar 

  • Palmer I G, Miller W S, Lloyd D J, Bull M J 1986 Plastic deformation of Al-Li single crystals. InAluminium-lithium alloys (eds) C Baker, P J Gregson, S J Harris, C J Peel (London:Inst. Metals) vol. 3, pp 565–575

    Google Scholar 

  • Peel C J 1989 The development of aluminium-lithium alloys: An overview. InNew light alloys (Neuilly-sur-Seine, France: AGARD)

    Google Scholar 

  • Peel C J, Evans B, Baker C A, Bennet D A, Gregson P J, Flower H M 1984 The development and application of improved aluminium-lithium alloys.In Aluminium-lithium alloys (eds) T H Sander, E A Starke (Warrendale, PA: Metall. Soc. AIME) vol. 2, pp 363–392

    Google Scholar 

  • Peel C J, McDarmaid D, Evans B 1988 Considerations of critical factors for the design of aerospace structures using current and future aluminium-lithium alloys.In Aluminium-lithium alloys — design, development and applications update (eds) R J Kar, S P Agrawal, W E Quist (Metals Park, Ohio: ASM Int.) pp 315–337

    Google Scholar 

  • Peters M, Lutjering G1976 Influence of grain size on tensile properties of aTi-Mo alloy with precipitate free zones.Z. Metallic. 67: 811–814

    Google Scholar 

  • Petit J, Suresh S, Vasudevan A K, Malcolm R C 1986 Constant amplitude and post-overload fatigue crack growth in Al-Li alloys.In Aluminium-lithium alloys (eds) C. Baker, P J Gregson, S J Harris, C J Peel (London: Inst. Metals) vol. 3, pp 257–262

    Google Scholar 

  • Pickens J R, Heubaum F H, Langan T J, Kramer L S 1989 Al-(4.5-6.3) Cu-1.3 Li-0.4 Ag-0.4 Mg-0.14 Zr alloy weldalite 049. InAluminium-lithium alloys (eds) T H Sanders, E A Starke (Birmingham: Mater. Comp. Eng. Publ.) vol. 3, pp 1397–1411

    Google Scholar 

  • Pickens J R 1990 Review: recent developments in the weldability of lithium-containing aluminium alloys.J. Mater. Sci. 25: 3035–3047

    Article  Google Scholar 

  • Polmear I J 1995 InLight alloys 3rd edn (Arnold Publications) p. 101

  • Quist W E, Narayanan G H 1989 Aluminium-lithium alloys. InAluminium alloys — Contemporary research and applications treatise on materials science and technology (eds) A K Vasudevan, R D Doherty (San Diego, CA: Academic Press) pp 219–254

    Google Scholar 

  • Rading G O, Berry J T 1996 On deviated and branched crack paths in Al-Li-X alloys.Mater. Sci. Eng. A219: 192–201.

    Google Scholar 

  • Radmilovic V, Fox A G, Fisher R M, Thomas G 1989 Lithium depletion in precipitate free zones (PFZ’s) in Al-Li base alloys.Scr. Metall. 23: 75–79

    Article  Google Scholar 

  • Reynolds M A, Creed E 1987 The development of 8090 and 8091 alloy extrusions.J. Phys. (Paris) 48: c3.195-c3.207

    Article  Google Scholar 

  • Reynolds M A, Gray A, Creed E, Jordan R M, Titchener A P 1986 Processing and properties of alcan medium and high strength Al-Li-Cu-Mg alloys in various product forms. InAluminium-lithium alloys (eds) C. Backer, P J Gregson, S J Harris, C J Peel (London: Inst. Metals) vol. 3, pp 57–65

    Google Scholar 

  • Sanders T H, Starke E A 1976 The relationship of microstructure to monotonie and cyclic straining of two age hardening aluminium alloys.Metall. Trans. A7: 1407–1418

    Google Scholar 

  • Sanders T H, Starke E A 1982 The effect of slip distribution on the monotonie and cyclic ductility of Al-Li binary alloys.Acta Metall. 30: 927–939

    Article  Google Scholar 

  • Sanders T H, Starke E A 1989 The physical metallurgy of aluminium-lithium alloys — A review. InAluminium-lithium alloys (eds) T H Sanders, E A Starke (Birmingham: Mater, and Component Eng. Publ.) vol. 1,pp 1–37

    Google Scholar 

  • Sanders T H, Ludwiczak E A, Sawtell R R 1980 The fracture behaviour of recrystalized Al-2-8%Li-0-3%Mn sheet.Mater. Sci. Eng. 43: 247–260

    Article  Google Scholar 

  • Sankaran K K, Grant N J 1980 The structure and properties of splat-quenched aluminium alloy 2024 containing lithium additions.Mater. Sci. Eng. 44: 213–227

    Article  Google Scholar 

  • Sankaran K K, O’Neal J E 1984 Structure-property relationships in Al-Cu-Li alloys. InAluminiumlithium alloys (eds) T H Sanders, E A Starke (Warrendale, PA: Metall. Soc. AIME): vol. 2, pp 393–405.

    Google Scholar 

  • Satya Prasad K 1999Solid state phase transformations in aa 8090 Al-Li alloys. Doctoral thesis, University of Roorkee, Roorkee

    Google Scholar 

  • Satya Prasad K, Mukhopadhyay A K, Gokhale A A, Banerjee D, Goel D B 1994δ precipitation in an Al-Li-Cu-Mg-Zr alloy.Scr. Metall. Mater. 30: 1299–1304

    Article  Google Scholar 

  • Satya Prasad K, Gokhale A A, Mukhopadyay A K, Banerjee D, Goel D B 1999 On the formation of facetted Al3Zr(Β′) precipitates in Al-Li-Cu-Mg-Zr alloys.Acta Mater. 41: 2581–2592

    Article  Google Scholar 

  • Satya Prasad K, Gokhale A A, Mukhopadhyay A K, Banerjee D, Goel D B 2000 Sequence of precipitation ofT 2 andδ phases during aging of Al-Li alloy 8090C.Mater. Sci. Forum 331–337:1043–1048

    Google Scholar 

  • Satya Prasad K, Vijaya Singh, Gokhale A A 2001 Micro structure of homogenised Al-Sc-Zr alloys. (unpublished work)

  • Shin K S, Kim S S, Lee E W 1989 Hydrogen embrittlement of a 2090 Al-Li alloy. InAluminiumlithium alloys (eds) T H Sanders, E A Starke (Birmingham: Mater. Components Eng. Publ.) vol. 3, pp 1319–1328

    Google Scholar 

  • Singh V, Sundararaman M, Chen W, Wahi R P 1991 Low-cycle fatigue behaviour of nimonic PE16 at room temperature.Metall. Trans. A22: 499–506

    Google Scholar 

  • Singh A K, Saha G G, Gokhale A A, Ray R K 1998 Evolution of texture and microstructure in a thermomechanically processed Al-Li-Cu-Mg alloy.Metall. Mater. Trans. A29: 665–675

    Article  Google Scholar 

  • Singh A K, Gokhale A A, Saha G G, Ray R K 1999 Texture evolution and anisotropy in Al-Li-Cu-Mg alloys. InTextures in materials research(eds) R K Ray, A K Singh (New Delhi: Oxford and IBH) pp 219–234

    Google Scholar 

  • Singh A K, Gokhale A A, Satya Prasad K 2001 (Unpublished work)

  • Srivatsan T S, Coyne E J 1986 Cyclic stress response and deformation behaviour of precipitation — hardened aluminium-lithium alloys.Int. J. Fatigue 8: 201–208

    Article  Google Scholar 

  • Srivatsan T S, Coyne E J 1987 Mechanisms governing cyclic fracture in an Al-Cu-Li alloy.Mater. Sci. Technol. 3: 130–138

    Google Scholar 

  • Srivatsan T S, Yamaguchi K, Starke E A 1986 The effects of environment and temperature on the low cycle fatigue behaviour of aluminium-alloy 2020.Mater. Sci. Eng. 83: 87–107

    Article  Google Scholar 

  • Srivatsan T S, Hoff T, Prakash A 1991 The high strain cyclic fatigue and fracture behaviour of 2090 aluminium alloy.Eng. Fracture Mech. 40: 297–309

    Article  Google Scholar 

  • Starke E A, Lin F S 1982 The influence of grain structure on the ductility of the Al-Cu-Li-Mn-Cd alloy 2020Metall.Trans. A13: 2259–2269

    Google Scholar 

  • Starke E A, Quist W E 1989 The micro structure and properties of aluminium-lithium alloys. InNew light alloys (Neuilly-sur-Seine, France: AGARD) pp 4.1–4.23

    Google Scholar 

  • Starke E A, Sanders T H, Palmer I G, 1981 New approaches to alloy development in the Al-Li system.J. Metals 33: 24.32

    Google Scholar 

  • Sundararaman M, Chen W, Singh V, Wahi R P 1990 TEM investigation of γ′ free bands in nimonic PE16 under LCF loading at room temperature.Acta Metall. Mater. 38: 1813–1822

    Article  Google Scholar 

  • Sunder R 1991 Engineering analysis of notch root fatigue crack growth under spectrum loading.Int. J. Fatigue 13: 249–262

    Article  Google Scholar 

  • Suresh S, Ritchie R O 1984 Propagation of short fatigue cracks.Int. Metals Rev. 29: 445–476

    Google Scholar 

  • Suresh S, Vasudevan A K, Bretz P E 1984 Mechanisms of slow fatigue crack growth in high strength aluminium alloys: Role of microstructure and environment.Metall. Trans. A15: 369–379

    Google Scholar 

  • Suresh S, Vasudevan A K, Tosten M, Howell P R 1987 Microscopic and macroscopic aspects of fracture in lithium containing aluminium alloys.Acta Metall. 35: 25–46

    Article  Google Scholar 

  • Sverdlin A, Drits A M, Krimova T V, Sergeev K N, Ginko I B 1998 Aluminium-lithium alloys for aerospace.Adv. Mater. Process. 6: 49–51

    Google Scholar 

  • Tintillier R, Gudladt H J, Gerold V, Petit J 1989 Near threshold fatigue crack growth in high purity binary Al-Li single crystals. InAluminium-lithium alloys (eds) T H Sanders, EA Starke (Birmingham: Mater. Components Eng. Publ.) vol. 2, pp 1135–1146

    Google Scholar 

  • Toropova L S, Eskin D G, Kharakterova M L, Dobtkina T V 1998Advanced aluminium alloys containing scandium (The Netherlands: Gordon and Breach Science Publ.) pp 133–167

    Google Scholar 

  • Vasudevan A K, Doherty R D 1987 Grain boundary ductile fracture in precipitationhardened aluminium alloys.Acta Metall. 35: 1193–1219

    Article  Google Scholar 

  • Vasudevan A K, Suresh S 1985 Lithium-containing aluminium alloys. Cyclic fracture.Metall. Trans. A16: 475–477

    Google Scholar 

  • Vasudevan A K, Bretz P E, Miller A C, Suresh S 1984 Fatigue crack growth behavior of aluminium alloy 2020 (Al-Cu-Li-Mn-Cd).Mater. Sci. Eng. 64: 113–122

    Article  Google Scholar 

  • Vasudevan A K, Ludwiczak E K, Baumann S F, Howell P R, Doherty R D, Kersker M M 1986 Grain boundary fracture in Al-Li alloys.Mater. Sci. Technol. 2: 1205–1209

    Google Scholar 

  • Vasudevan A K, Doherty R D, Suresh S 1989 Fracture and fatigue characteristics in aluminium alloys. InAluminium alloys — Contemporary research and applications. Treatise on materials science and technology (eds) A K Vasudevan, R D Doherty (San Diego, CA: Academic Press) pp 445–462

    Google Scholar 

  • Venkateswara Rao K T, Ritchie R O 1989a Mechanical properties of aluminium-lithium alloys: Part -I. Fracture toughness and microstructure.Mater. Sci. Technol. 5: 882–895

    Google Scholar 

  • Venkateswara Rao K T, Ritchie R O 1989b Mechanical properties of aluminium-lithium alloys: Part — II. Fatigue crack propagation.Mater. Sci. Technol. 5: 896–905

    Google Scholar 

  • Venkateswara Rao K T, Ritchie R O 1990 Mechanisms influencing the cryogenic fracture-toughness behaviour of aluminium-lithium alloys.Acta Metall. 38: 2309–2326

    Article  Google Scholar 

  • Venkateswara Rao K T, Ritchie R O 1992 Fatigue in aluminium-lithium alloys.Int. Mater. Rev. 37: 153–185

    Google Scholar 

  • Venkateswara Rao K T, Yu W, Ritchie R O 1988a Fatigue crack propagation in aluminium-lithium alloy 2090: Part I. Long crack behaviour.Metall. Trans. A19: 549–561

    Google Scholar 

  • Venkateswara Rao K T, Yu W, Ritchie R O 1988b Fatigue crack propagation in aluminium-lithium alloy 2090: Part II. Small crack behaviour.Metall. Trans. A19: 563–569

    Google Scholar 

  • Venkateswara Rao K T, Bucci R J, Jata K V, Ritchie R O 1991 A comparison of fatigue-crack propagation behaviour in sheet and plate aluminium-lithium alloys.Mater. Sci. Eng. A141: 39–48

    Google Scholar 

  • Vijaya Singh 1997Preparation and characterisation of Al-Li-Cu-Mg-Zr based alloys. Doctoral thesis, Banaras Hindu University, Varanasi

    Google Scholar 

  • Vijaya Singh, Chakravorty C R 1989 Melting and casting of Al-Li alloys — A review. InScience and technology of aluminium-lithium alloys (Bangalore: Hindusthan Aeronautics) pp 83–91

    Google Scholar 

  • Vijaya Singh, Gokhale A A 2000 Control of grain structure through transition element additions in an Al-Li base alloy.Mater. Sci. Forum 331–337: 477–482

    Google Scholar 

  • Vijaya Singh, Satya Prasad K, Gokhale A A 2001 Effect of Zr and Sc additions on the as-cast structure of aluminium.Int. J. Cast Metals Res. (submitted)

  • Wadsworth J, Palmer I G, Crookes D D, Lewis R E 1984 Superplastic behaviour of aluminium-lithium alloys, inAluminium-lithium alloys (eds) T H Sanders, E A Starke (Warrendale, PA: Metall. Soc. AIME) pp 111–135

    Google Scholar 

  • Wadsworth J, Heusahall C A, Nieh T E 1986 Superplastic aluminium-lithium alloys. InAluminiumlithium alloys (eds) C Backer, P J Gregson, S J Harris, C J Peel (London: Inst. Metals) pp 199–212

    Google Scholar 

  • Wanhill R J H 1994 Status and prospects for aluminium-lithium alloys in aircraft structures.Int. J. Fatigue 16: 3–20

    Article  Google Scholar 

  • Wanhill R J H, Hart W G J-t’, Schra L 1991 Flight simulation and constant amplitudefatigue crack growth in aluminium-lithium sheet and plate. InAeronautical fatigue: Key to safety and structural integrity (Warley, UK: Engineering Materials Advisory Series) pp 393–430

    Google Scholar 

  • Warren C J, Rioja R J 1989 Forming characteristics and post-formed properties of Al-Li alloys. InAluminium-lithium alloys (eds) T H Sanders, E A Starke (Birmingham: MCEP) pp 417–429

    Google Scholar 

  • Webster D 1987 The effect of low melting point impurities on the properties of aluminium-lithium alloys.Metall. Trans. A18: 2187–2193

    Google Scholar 

  • Welpmann K, Peters M, Sanders T H 1984 Aluminium-lithium alloys.Aluminium 60: E641-E646

    Google Scholar 

  • Wert J A, Lumsden J B 1985 Intergranular fracture in an Al-Li-Cu-Mg-Zr alloy.Scr. Metall. 19: 205–209

    Article  Google Scholar 

  • Westwood A R C 1990 New materials for aerospace industry.Mater. Sci. Technol. 6: 958–961

    Google Scholar 

  • Williams D B, Howell P R 1989 The micro structure of aluminium-lithium based alloys. InAluminium alloys — Contemporary research and applications. Treatise on materials science and technology (eds) A K Vasudevan, R D Doherty (San Diego, CA: Academic Press) pp 219–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, N.E., Gokhale, A.A. & Rao, P.R. Mechanical behaviour of aluminium-lithium alloys. Sadhana 28, 209–246 (2003). https://doi.org/10.1007/BF02717134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02717134

Keywords

Navigation