Skip to main content
Log in

Cyclic deformation behaviour of austenitic steels at ambient and elevated temperatures

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

The aim of the present investigation is to characterise cyclic deformation behaviour and plasticity-induced martensite formation of metastable austenitic stainless steels at ambient and elevated temperatures, taking into account the influence of the alloying elements titanium and niobium. Titanium and niobium are ferrite-stabilising elements which influence the ferrite crystallisation. Furthermore, They form carbides and/or carbonitrides and thus limit the austenite-stabilising effect of carbon and nitrogen. Several specimen batches of titanium and niobium alloyed austenite and of a pure Cr-Ni-steel for comparison were tested under stress and total strain control at a frequency of 5 Hz and triangular load-time waveforms. Stress-strain-hysteresis and temperature measurements were used at ambient temperature to characterise cyclic deformation behaviour. Plasticity-induced martensite content was detected with non-destructive magnetic measuring techniques. The experiments yield characteristic cyclic deformation curves and corresponding magnetic signals according to the actual fatigue state and the amount of martensite. Fatigue behaviour of X6CrNiTil810 (AISI 321), X10CrNiCb189 (AISI 348) and X5CrNi1810 (AISI 304) is characterised by cyclic hardening and softening effects which are strongly influenced by specific loading conditions. Martensite formation varies with the composition, loading conditions, temperature and number of cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassler H-J, Dobmann G, Lang M, Eifler D 1997 Characterization of the fatigue behaviour of austenitic steel using HTSL-Squid.23th Annual Review of Progress in Quantitative Nondestructive Evaluation, San Diego, USA, pp 1597–1604

    Google Scholar 

  • Bayerlein M, Christ H-J, Mughrabi H 1989 Plasticity induced martensitic transformation during cyclic deformation of AISI 304L stainless steel,Mater. Sci. Eng. A114: L11-L16

    Google Scholar 

  • Dobmann G, Lang M, Eifler D, Bassler H-J 2001 On-line Fatigue Monitoring of Austenitic Stainless Steel Using a GMR-Sensor.6th Int. Workshop on Electromagnetic Nondestructive Evaluation (Budapest: IOS Press) pp 259–266

    Google Scholar 

  • Eckstein H-J 1990 KorrosionsbestÄndige StÄhle.Deutscher Verlag für Grundstoffindustrie (Leipzig) pp 90–98

  • Eifler D 1997 Fatigue behaviour of steel at ambient and elevated temperatures. InRisk based assessment of industrial components and plants — vol. II. QUNEST and Q NET (Madras: Indian Institute of Technology) pp 1–17

    Google Scholar 

  • Eifler D 2000 Fatigue behaviour of ferritic and austenitic steels at elevated temperatures.Materials ageing and life management (ed.) Sunil Sachdev (Kalpakkam: Allied Publishers) vol. 1 pp 17–26

    Google Scholar 

  • Harig H, Dengel D 1980 Estimation of the fatigue limit by progressively-increasing load tests,Fatig.Eng. Mater. Struct. 3: pp 113–128

    Article  Google Scholar 

  • Lang M, Johnson J, Schreiber J, Dobmann G, Bassler H J, Eifler D, Ehrlich R, Gampe U 2000 Cyclic deformation behaviour of AISI 321 austenitic steel and its characterization by means of HTC-SQUID.Nucl. Eng. Design 198: pp 185–191

    Article  Google Scholar 

  • Nebel T, Martin U, Eifler D 2001 Wechselverformungsverhalten metastabiler austenitischer StÄhle.HTM HÄrterei-Technische Mitteilungen, Zeitschrift für WÄrmebehandlung und Werkstofftechnik (München: Carl Hanser Verlag) HTM 56, pp 314.320

    Google Scholar 

  • Olsen G B, Cohen M 1975 Kinetics of strain induced martensite nucleation.Metall. Trans. A6: 791–795

    Google Scholar 

  • Sandhya R, Bhanu Sankara Rao K, Mannan S L, Devanathan R 2001 Substructural recovery in a cold worked Ti-modified austenitic stainless steel during high temperature low cycle fatigue.Int. J. Fatig. 23: 789–797

    Article  Google Scholar 

  • Srinivasan V S, Valsan M, Sandhya R, Bhanu Sankara Rao K, Mannan S L, Sastry D H 1999 High temperature time-dependent low cycle fatigue behaviour of a 316L(N) stainless steel.Int. J. Fatig. 21: 11–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nebel, T., Eifler, D. Cyclic deformation behaviour of austenitic steels at ambient and elevated temperatures. Sadhana 28, 187–208 (2003). https://doi.org/10.1007/BF02717133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02717133

Keywords

Navigation