Skip to main content
Log in

Characterisation of interfaces in nanocrystalline palladium

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Structures of grain boundaries and triple line junctions in nanocrystalline materials are of interest owing to large fractions of atoms in nanocrystalline materials being at these interfacial positions. Grain boundary and triple line junction structures in nanocrystalline palladium have been studied using high-resolution transmission electron microscopy (HRTEM). The main micro structural features observed include the varying atomic structures of grain boundaries and the presence of disordered regions at triple line junctions. Also, there is variation in lattice parameters in different nanocrystalline grains. Geometric phase analysis is used to quantify atomic displacements within nanocrystalline grains. Displacement fields thus detected indicate links to the interface structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ade G, Lauer R 1999 Direct determination of lattice distortions by digital processing of HRTEM images of crystals.Ultramicroscopy 77:177–185

    Article  Google Scholar 

  • Arzt E 1998 Size effects in materials due to microstructural and dimensional constraints: A comparative review.Acta Mater. 46: 5611–5626

    Article  Google Scholar 

  • Bollmann W 1988 Triple-line disclinations — representations, continuity and reactions.Philos. Mag. A57: 637–649

    Google Scholar 

  • Crozier P A, Tsen S C Y, Liu J, Cortes C L, Perez-Omil J A 1999 Factors affecting the accuracy of lattice spacing determined by HREM in nanometre sized Pt particles.J. Electron Microsc. 48: 1015–1024

    Google Scholar 

  • Divakar R, Raghunathan V S, Ranganathan S 2001 Image analysis for high resolution transmission electron microscopy.Image analysis in materials and life sciences (eds) C Babu Rao, P Kalyana-sundaram, K K Ray, Baldev Raj (Oxford & IBH) pp 73–79

    Google Scholar 

  • Eastman J A, Fitzsimmons M R, Müller-Stach M, Wallner G, Elam W T 1992 Characterisation of nanocrystalline palladium by x-ray diffraction and EXAFS.Nanostruct. Mater. 1: 41–52

    Google Scholar 

  • Feynman R P 1960 There’s plenty of room at the bottom — An invitation to enter anew field of physics.Eng. Sci. at http://www.zyvex.com/nanotech/feynman.html

  • Fitzsimmons M R, Eastman J A, Miiller-Stach M, Wallner G 1991 Structural characterization of nanometer-sized crystalline Pd by X-ray-diffraction techniques.Phys. Rev. B44: 2452–2460

    Google Scholar 

  • Gleiter H 2000 Nanostructured materials: basic concepts and microstructure.Acta Mater. 48: 1–29

    Article  Google Scholar 

  • Gryaznov V G, Trusov L I 1993 Size effects in micromechanics of nanocrystals.Prog. Mater. Sci. 37: 289–401

    Article  Google Scholar 

  • Haubold T, Birringer R, Lengeler B, Gleiter H 1989 EXAFS studies of nanocrystalline materials exhibiting a new solid state structure with randomly arranged atoms.Phys. Lett. A135: 461–466

    Google Scholar 

  • Lengeler B, Eisenberger P 1980 Extended X-ray absorption fine structure analysis of interatomic distances, co-ordination numbers and mean relative displacements in disordered alloys.Phys. Rev. B21: 4507–4520

    Google Scholar 

  • Li D X, Ping D H, Ye H Q, Qin X Y, Wu X J 1993 HRTEM study of the micro structure in nanocrystalline materials.Mater. Lett. 18: 29–34

    Article  Google Scholar 

  • Löffler J F, Wagner W, Kostorz G 2000 Grain-size dependence of intergranular magnetic correlations in nanostructured metals.J. Appl. Crystallogr. 33: 451–455

    Article  Google Scholar 

  • Malm J O, O’Keefe M A 1997 Deceptive “lattice spacings” in high resolution micrographs of metal nanoparticles.Ultramicroscopy 68: 13–23

    Article  Google Scholar 

  • Melmed A J, Hayward D O 1959 On the occurrence of fivefold rotational symmetry in metal whiskers.J. Chem. Phys. 31: 545–546

    Article  Google Scholar 

  • Mills M J 1993 High-resolution transmission electron microscopy and atomistic calculations of grain boundaries in metals and in terme tallies.Mater. Sci. Eng. A166: 35–50

    Google Scholar 

  • Nieh T G, Wadsworth J 1991 Hall-Petch relation in nanocrystalline solids.Scr. Metall. 25: 955–958

    Article  Google Scholar 

  • Osipov A V, Ovid’Ko IA 1992 Diffusion induced decay of disclinations and solid state amorphisation in mechanically alloyed materials.Appl. Phys. A54: 517–519

    Google Scholar 

  • Palumbo G, Thorpe S J, Aust K T 1990 On the contribution of triple junctions to the structure and properties of nanocrystalline materials.Scr. Metall. 24: 1347–1350

    Article  Google Scholar 

  • Ping D H, Li D X, Ye H Q 1995 HRTEM study on the microstructure of nanocrystalline materials.Proc. 6th Beijing Conf. and Exhibition on Instrum. Analysis, pp A75–A76

  • Ping D H, Li D X, Ye H Q 1995 Microstructural characterization of nanocrystalline materials.J. Mater. Sci. Lett. 14: 1536–1540

    Article  Google Scholar 

  • Qin X Y, Zhu J S, Zhang L D, Zhang X Y 1998 Formation process of interfaces and microdefects in nanostructured Ag studied by positron lifetime spectroscopy.J. Phys. 10: 3075–3088

    Google Scholar 

  • Ranganathan S, Divakar R, Raghunathan V S 2000 Interface structures in nanocrystalline materials.Scr. Mater. 44:1169–1174

    Article  Google Scholar 

  • Raghavan G, Divakar R, Tripura Sundari S, Sundararaman D, Tyagi A K, Kanwar Krishan 1998 Heterogeneous nucleation of the amorphous phase and dissolution of nanocrystalline grains in bilayer Al-Ge thin films.Scr. Mater. 38: 59–65

    Article  Google Scholar 

  • Schaefer H E, Würschum R 1987 Positron lifetime spectroscopy in nanocrystalline iron.Phys. Lett. A1 19: 370–374

    Google Scholar 

  • Schwoebel R L 1966 Anomalous growth of gold from the vapor phase.J. Appl. Phys. 37: 2515–2516

    Article  Google Scholar 

  • Stadelmann P A 1987 EMS — A software package for electron diffraction analysis and HREM image simulation in materials science.Ultramicroscopy 21: 131–146

    Article  Google Scholar 

  • Sundararaman D 1995 Nanocrystalline state and solid state amorphization.Mater. Sci. Engg. B33: 307–313

    Article  Google Scholar 

  • Tehuacanero S, Herrera R, Avalos M, Yacamàn M J 1992 High resolution TEM studies of gold and palladium nanoparticles.Acta Metall. 40: 1663–1674

    Article  Google Scholar 

  • Thomas G J, Siegel R W, Eastman J A 1990 Grain boundaries in nanocrystalline palladium: High resolution electron microscopy and image simulations.Scr. Metall. Mater. 24: 201–206

    Article  Google Scholar 

  • Weissmüller J 2000 Grain boundaries and their impact on thermodynamic equilibrium.Science of metastable and nanocrystalline alloys. Structure, properties and modelling (eds) A R Dinesen, M Eldrup, D J Jensen, S Linderoth, T B Pederson, N H Pryds, A SchrØder, J A Wert (Denmark: RisØ Nat. Lab.)

    Google Scholar 

  • Wood G J, Stobbs W M, Smith D J 1984 Methods for the measurement of rigid body displacements at edge-on boundaries using high resolution electron microscopy.Philos. Mag. A50: 375–391

    Google Scholar 

  • Wunderlich W, Ishida Y, Maurer R 1990 HRTEM studies of the microstructure of nanocrystalline palladium.Scr. Metall. Mater. 24: 403–408

    Article  Google Scholar 

  • Zhu X, Birringer R, Kerr U, Gleiter H 1987 X-ray diffraction studies of the structure of nanometersized crystalline materials.Phys. Rev. B35: 9085–9090

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divakar, R., Raghunathan, V.S. Characterisation of interfaces in nanocrystalline palladium. Sadhana 28, 47–62 (2003). https://doi.org/10.1007/BF02717125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02717125

Keywords

Navigation