Skip to main content
Log in

Effect of bulk modulus on performance of a hydrostatic transmission control system

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

In this paper, we examine the performance of PID (proportional integral derivative) and fuzzy controllers on the angular velocity of a hydrostatic transmission system by means of Matlab-Simulink. A very novel aspect is that it includes the analysis of the effect of bulk modulus on system control. Simulation results demonstrates that bulk modulus should be considered as a variable parameter to obtain a more realistic model. Additionally, a PID controller is insufficient in presence of variable bulk modulus, whereas a fuzzy controller provides robust angular velocity control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dasgupta K 2000 Analysis of a hydrostatic transmission system using low speed high torque motor.Mech. Mach. Theory 35: 1481–1499

    Article  MATH  Google Scholar 

  • Dasgupta K, Chattapadhyay A, Mondal S K 2005 Selection of fire-resistant hydraulic fluids through system modelling and simulation.Simul. Model. Pract. Theory 13: 1–20

    Article  Google Scholar 

  • Eryilmaz B, Wilson B H 2001 Improved tracking control of hydraulic systems.Trans. ASME: J. Dyn. Syst. Meas. Control 123: 457–462

    Article  Google Scholar 

  • Huhtala K 1996 Modelling of hydrostatic transmission — steady state, linear and nonlinear models.Acta Polytech. Sci. Me. 123:

  • Jedrzykiewicz Z, Pluta J, Stojek J 1997 Research on the properties of a hydrostatic transmission for different efficiency models of its elements.Acta Montanistica Slovaca 2: 373–380

    Google Scholar 

  • Jedrzykiewicz Z, Pluta J, Stojek J 1998 Application of the Matlab-Simulink package in the simulation tests on hydrostatic systems.Acta Montanistica Slovaca Rocnik 3: 29–36

    Google Scholar 

  • Kugi A, Schlacher K, Aitzetmuller H, Hirmann G 2000 Modelling and simulation of a hydrostatic transmission with variable-displacement pump.Math. Comput. Simul. 53: 409–414

    Article  Google Scholar 

  • Lee C B, Wu H W 1996 Self-tuning adaptive speed control for hydrostatic transmission systems.Int. J. Comput. Appl. Technol. 9: 18–33

    Google Scholar 

  • Lennevi J, Palmberg J O 1995 Application and implementation of LQ design method for the velocity control of hydrostatic transmissions.Proc. Inst. Mech. Eng., J. Syst. Control Eng. 209: 255–268

    Google Scholar 

  • Manring N D 1997 The effective fluid bulk modulus within a hydrostatic transmission.Trans. ASME: J. Dyn. Syst. Meas. Control 119: 462–466

    Google Scholar 

  • Manring N D, Luecke G R 1998 Modelling and designing a hydrostatic transmission with a fixed-displacement motor.Trans. ASME: J. Dyn. Syst. Meas. Control 120: 45–49

    Google Scholar 

  • McCloy D, Martin H R 1980Control of fluid power, analysis and design (New York: John Wiley & Sons)

    Google Scholar 

  • Merrit H E 1967Hydraulic control systems (New York: John Wiley & Sons)

    Google Scholar 

  • Ogata K 1990Modern control engineering (Englewood Chiffs, NJ: Prentice-Hall)

    MATH  Google Scholar 

  • Piotrowska A 2003 The control of the rotational speed of hydraulic engine in hydrostatic transmission by use of the moduleDSP.28th ASR Seminar, Instruments and Control (Ostrava: VSB-TU) pp. 291–297

    Google Scholar 

  • Prasetiawan E A 2001Modelling, simulation and control of an earthmoving vehicle powertrain simulator. M Sc thesis, Mechanical Engineering in Graduate College, University of Illinois, Urbana, Il

    Google Scholar 

  • Re L, Goransson A, Astolfi A 1996 Enhancing hydrostatic gear efficiency through nonlinear optimal control strategies.Trans. ASME: J. Dyn. Syst. Meas. Control 118: 727–732

    MATH  Google Scholar 

  • Tan H Z, Sepehri N 2002 Parametric fault diagnosis for electrohydraulic cylinder drive units.IEEE Trans. Ind. Electron. 49: 96–106

    Article  Google Scholar 

  • Tanaka K 1996Introduction to fuzzy logic for engineering application (Berlin Springer)

    Google Scholar 

  • Tikkanen S, Huhtala K, Vilenius M 1995 Fuzzy controllers in hydrostatic transmission.IEE Colloquium on Innovative Actuators for Mechatronic Systems (London: Inst. Elec. Eng.) 15/1–15/3

    Google Scholar 

  • Watton J 1989Fluid power systems: Modelling, simulation, analog and microcomputer control (Englewood Chiffs, NJ: Prentice-Hall)

    Google Scholar 

  • Wu K, Zhang Q, Hansen 2004 Modelling and identification of a hydrostatic transmission hardware-in-the-loop simulator.Int. J. Vehicle Des. 34: 63–75

    Google Scholar 

  • Yu J, Chen Z, Lu Y 1994 The variation of oil effective bulk modulus with pressure in hydraulic systems.Trans. ASME: J. Dyn. Syst. Meas. Control 116: 146–150

    Article  Google Scholar 

  • Zadeh L 1965 Fuzzy sets.Inf. Control 8: 338–353

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akkaya, A.V. Effect of bulk modulus on performance of a hydrostatic transmission control system. Sadhana 31, 543–556 (2006). https://doi.org/10.1007/BF02715913

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715913

Keywords

Navigation