Journal of Genetics

, Volume 82, Issue 1–2, pp 45–76 | Cite as

What have two decades of laboratory life-history evolution studies onDrosophila melanogaster taught us?

Review Article

Abstract

A series of laboratory selection experiments onDrosophila melanogaster over the past two decades has provided insights into the specifics of life-history tradeoffs in the species and greatly refined our understanding of how ecology and genetics interact in life-history evolution. Much of what has been learnt from these studies about the subtlety of the microevolutionary process also has significant implications for experimental design and inference in organismal biology beyond life-history evolution, as well as for studies of evolution in the wild. Here we review work on the ecology and evolution of life-histories in laboratory populations ofD. melanogaster, emphasizing how environmental effects on life-history-related traits can influence evolutionary change. We discuss life-history tradeoffs—many unexpected—revealed by selection experiments, and also highlight recent work that underscores the importance to life-history evolution of cross-generation and cross-life-stage effects and interactions, sexual antagonism and sexual dimorphism, population dynamics, and the possible role of biological clocks in timing life-history events. Finally, we discuss some of the limitations of typical selection experiments, and how these limitations might be transcended in the future by a combination of more elaborate and realistic selection experiments, developmental evolutionary biology, and the emerging discipline of phenomics.

Keywords

laboratory selection experimental evolution lifespan development time competitive ability genetic architecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann M., Bijlsma R., James A. C., Partridge L., Zwaan B. J. and Stearns S. C. 2001 Effects of assay conditions in life history experiments withDrosophila melanogaster.J. Evol. Biol. 14, 199–209.CrossRefGoogle Scholar
  2. Aiken R. B. and Gibo D. L. 1979 Changes in fecundity ofDrosophila melanogaster andD. simulans in response to selection for competitive ability.Oecologia 43, 63–77.CrossRefGoogle Scholar
  3. Allemand R. 1976 Les rythmes de vitellogenese et d’ovulation en photoperiode LD 12: 12 deDrosophila melanogaster.J. Insect Physiol. 22, 1031–1035.CrossRefPubMedGoogle Scholar
  4. Anderson A. R., Collinge J. E., Hoffmann A. A., Kellett M. and McKechnie S. W. 2003 Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by thehsr-omega gene inDrosophila melanogaster.Heredity 90, 195–202.PubMedCrossRefGoogle Scholar
  5. Arking R., Dudas S. P. and Baker G. T. III 1993 Genetic and environmental factors regulating the expression of an extended longevity phenotype in a long lived strain ofDrosophila.Genetica 91, 127–142.PubMedCrossRefGoogle Scholar
  6. Arking R., Burde V., Graves K., Hari R., Feldman E.et al. 2000 Forward and reverse selection for longevity inDrosophila is characterized by alteration of antioxidant gene expression and oxidative damage patterns.Exp. Gerontol. 35, 167–185.PubMedCrossRefGoogle Scholar
  7. Arthur W. 2002 The emerging conceptual framework of evolutionary developmental biology.Nature 415, 757–764.PubMedGoogle Scholar
  8. Atkinson W. D. 1979 A field investigation of larval competition in domesticDrosophila.J. Anim. Ecol. 48, 91–102.CrossRefGoogle Scholar
  9. Azevedo R. B. R., French V. and Partridge L. 1996 Thermal evolution of egg size inDrosophila melanogaster.Evolution 50, 2338–2345.CrossRefGoogle Scholar
  10. Bakker K. 1959 Feeding period, growth and pupation in larvae ofDrosophila melanogaster.Entomol. Exp. Appl. 2, 171–186.CrossRefGoogle Scholar
  11. Bakker K. 1961 An analysis of factors which determine success in competition for food among larvae ofDrosophila melanogaster. Archs.Néerl. Zool. 14, 200–281.CrossRefGoogle Scholar
  12. Bakker K. 1969 Selection for the rate of growth and its influence on competitive ability of larvae inDrosophila melanogaster.Neth. J. Zool. 19, 541–595.CrossRefGoogle Scholar
  13. Bakker K. and Nelissen F. X. 1963 On the relations between the duration of the larval and pupal period, weight and diurnal rhythm in emergence inDrosophila melanogaster.Entomol. Exp. Appl. 6, 37–52.Google Scholar
  14. Bangham J., Chapman T. and Partridge L. 2002 Effects of body size, accessory gland and testis size on pre-and postcopulatory success inDrosophila melanogaster.Anim. Behav. 64, 915–921.CrossRefGoogle Scholar
  15. Beaver L. M., Gvakharia B. O., Vollintine T. S., Hege D. M., Stanewsky R. and Giebultowicz J. M. 2002 Loss of circadian clock function decreases reproductive fitness in males ofDrosophila melanogaster.Proc. Natl. Acad. Sci. USA 99, 2134–2139.PubMedCrossRefGoogle Scholar
  16. Berreur P., Poncheron P., Berreur-Bennefant J. and Simpson P. 1979 Ecdysone levels and pupariation in a temperature sensitive mutation ofDrosophila melanogaster.J. Exp. Biol. 210, 333–373.Google Scholar
  17. Borash D. J. and Ho G. T. 2001 Patterns of selection: stress resistance and energy storage in density-dependent populations ofDrosophila melanogaster.J. Insect Physiol. 47, 1349–1356.PubMedCrossRefGoogle Scholar
  18. Borash D. J. and Shimada M. 2001 Genetics of larval urea and ammonia tolerance and cross tolerance inDrosophila melanogaster.Heredity 86, 658–667.PubMedCrossRefGoogle Scholar
  19. Borash D. J., Gibbs A. G., Joshi A. and Mueller L. D. 1998 A genetic polymorphism maintained by natural selection in a temporally varying environment.Am. Nat. 151, 148–156.CrossRefPubMedGoogle Scholar
  20. Borash D. J., Pierce V. A., Gibbs A. G. and Mueller L. D. 2000a Evolution of urea and ammonia tolerance inDrosophila melanogaster: resistance and cross tolerance.J. Insect Physiol. 46, 763–769.PubMedCrossRefGoogle Scholar
  21. Borash D. J., Teótonio H., Rose M. R. and Mueller L. D. 2000b Density-dependent natural selection in Drosophila: correlations between feeding rate, development time and viability.J.Evol. Biol. 13, 181–187.CrossRefGoogle Scholar
  22. Buck S., Nicholson M., Dudas S., Wells R., Force A.et al. 1993 Larval regulation of adult longevity in a genetically selected long-lived strainof Drosophila.Heredity 71, 23–32.PubMedCrossRefGoogle Scholar
  23. Buck S., Vettraino J., Force A. G. and Arking R. 2000 Extended longevity inDrosophila is consistently associated with a decrease in developmental viability.J. Gerontol. 55, B292-B301.Google Scholar
  24. Butz A. and Hayden P. 1961 The effects of age of male and female parents on the life cycle ofDrosophila melanogaster.Ann. Entomol. Soc. 55, 617–618.Google Scholar
  25. Cavicchi S., Guerra D., La Torre V. and Huey R. B. 1995 Chromosomal analysis of heat-shock tolerance inDrosophila melanogaster evolving at different temperatures in the laboratory.Evolution 49, 676–684.CrossRefGoogle Scholar
  26. Chapman T. 2001 Seminal fluid-mediated fitness traits inDrosophila.Heredity 87, 511–521.PubMedCrossRefGoogle Scholar
  27. Chapman T., Liddle L. F., Kalb J. M., Wolfner M. F. and Partridge L. 1995 Cost of mating inDrosophila melanogaster females is mediated by male accessory gland products.Nature 373, 241–244.PubMedCrossRefGoogle Scholar
  28. Charlesworth B. 1990 Optimization models, quantitative genetics, and mutation.Evolution 44, 520–538.CrossRefGoogle Scholar
  29. Charlesworth B. 1994Evolution in age-structured populations, 2nd edition. Cambridge University Press, London.Google Scholar
  30. Chiang H. C. and Hodson A. G. 1950 An analytical study of population growth inDrosophila melanogaster.Ecol. Monogr. 20, 173–206.CrossRefGoogle Scholar
  31. Chippindale A. K., Leroi A. M., Kim S. B. and Rose M. R. 1993 Phenotypic plasticity and selection inDrosophila life history evolution. 1. Nutrition and the cost of reproduction.J. Evol. Biol. 6, 171–193.CrossRefGoogle Scholar
  32. Chippindale A. K., Hoang D. T., Service P. M. and Rose M. R. 1994 The evolution of development inDrosophila melanogaster selected for postponed senescence.Evolution 48, 1880–1899.CrossRefGoogle Scholar
  33. Chippindale A. K., Chu T. J. F. and Rose M. R. 1996 Complex trade-offs and the evolution of starvation resistance inDrosophila melanogaster.Evolution 50, 753–766.CrossRefGoogle Scholar
  34. Chippindale A. K., Alipaz J. A., Chen H. W. and Rose M. R. 1997a Experimental evolution of accelerated development inDrosophila. 1. Developmental speed and larval survival.Evolution 51, 1536–1551.CrossRefGoogle Scholar
  35. Chippindale A. K., Leroi A. M., Saing H., Borash D. J. and Rose M. R. 1997b Phenotypic plasticity and selection inDrosophila life history evolution. 2. Diet, mates and the cost of reproduction.J. Evol. Biol. 10, 269–293.CrossRefGoogle Scholar
  36. Chippindale A. K., Gibbs A. G., Sheik M., Yee K. J., Djawdan M., Bradley T. J. and Rose M. R. 1998 Resource acquisition and the evolution of stress resistance inDrosophila melanogaster.Evolution 52, 1342–1352.CrossRefGoogle Scholar
  37. Chippindale A. K., Gibson J. B. and Rice W. R. 2001 Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict inDrosophila.Proc. Natl. Acad. Sci. USA 8, 1671–1675.CrossRefGoogle Scholar
  38. Civetta A. 1999 Direct visualization of sperm competition and sperm storage inDrosophila.Curr. Biol. 9, 841–844.PubMedCrossRefGoogle Scholar
  39. Clark A. G., Begun D. J. and Prout T. 1999 Female x male interactions inDrosophila sperm competition.Science 283, 217–220.PubMedCrossRefGoogle Scholar
  40. Clarke J. M., Maynard Smith J. and Sondhi K. C. 1961 Asymmetrical response to selection for rate of development inDrosophila subobscura.Genet. Res. 2, 70–81.Google Scholar
  41. Cole L. C. 1954 The population consequences of life history phenomena.Quart. Rev. Biol. 29, 103–137.PubMedCrossRefGoogle Scholar
  42. Cordts R. and Partridge L. 1996 Courtship reduces longevity of maleDrosophila melanogaster.Anim. Behav. 52, 269–278.CrossRefGoogle Scholar
  43. Crill W. D., Huey R. B. and Gilchrist G. W. 1996 Within- and between-generation effects of temperature on the morphology and physiology ofDrosophila melanogaster.Evolution 50, 1205–1218.CrossRefGoogle Scholar
  44. da Silva L. B. and Valente V. L. S. 2001 Body size and mating success inDrosophila willistoni are uncorrelated under laboratory conditions.J. Genet. 80, 77–781.CrossRefGoogle Scholar
  45. David J. R. and Capy P. 1982 Genetics and origin of aDrosophila melanogaster population recently introduced to the Seychelles.Genet. Res. 40, 295–303.Google Scholar
  46. David J. R., Allemand R., van Herrewege J. and Cohet Y. 1983 Ecophysiology: abiotic factors. InThe genetics and biology of Drosophila (ed. M Ashburner, H. L. Carson and J. N. Thompson Jr), pp. 105–170. Academic Press, London.Google Scholar
  47. Davidowitz G., D’Amico L. J. and Nijhout H. F. 2003 Critical weight in the development of insect body size.Evol. Dev. 5, 188–197.PubMedCrossRefGoogle Scholar
  48. Deckert-Cruz D. J., Tyler R. H., Landmesser J. E. and Rose M. R. 1997 Allozyme differentiation in response to laboratory demographic selection ofDrosophila melanogaster.Evolution 51, 865–872.CrossRefGoogle Scholar
  49. de Jong G. and Behera N. 2002 The influence of life history differences on the evolution of reaction norms.Evol. Ecol. Res. 4, 1–25.Google Scholar
  50. de Jong G. and van Noordwijk A. J. 1992 Acquisition and allocation of resources: genetic (co)variances, selection and life histories.Am. Nat. 139, 749–770.CrossRefGoogle Scholar
  51. De Laguerie P., Olivieri I., Atlan A. and Gouyon P. H. 1991 Analytic and simulation models predicting positive genetic correlations between traits linked by tradeoffs.Evol. Ecol. 5, 361–369.CrossRefGoogle Scholar
  52. de Moed G. H., de Jong G. and Scharloo W. 1998 The energetics of growth inDrosophila melanogaster: effect of temperature and food conditions.Neth. J. Zool. 48, 169–188.CrossRefGoogle Scholar
  53. de Moed G. H., Kruitwagen C. L. J. J., de Jong G. and Scharloo W. 1999 Critical weight for the induction of pupariation inDrosophila melanogaster: genetic and environmental variation.J. Evol. Biol. 12, 852–858.CrossRefGoogle Scholar
  54. Dercole F., Ferrière R. and Rinaldi S. 2002 Ecological bistability and evolutionary reversals under asymmetrical competition.Evolution 56, 1081–1090.PubMedGoogle Scholar
  55. Djawdan M., Sugiyama T. T., Schlaeger L. K., Bradley T. J. and Rose M. R. 1996 Metabolic aspects of the trade-off between fecundity and longevity inDrosophila melanogaster.Physiol. Zool. 69, 1176–1195.Google Scholar
  56. Djawdan M., Rose M. R. and Bradley T. J. 1997 Does selection for stress resistance lower metabolic rate?Ecology 78, 828–837.Google Scholar
  57. Djawdan M., Chippindale A. K., Rose M. R. and Bradley T. J. 1998 Metabolic reserves and stress resistance inDrosophila melanogaster.Physiol. Zool. 71, 584–594.PubMedGoogle Scholar
  58. Dudas S. P. and Arking R. 1995 A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long lived strain ofDrosophila.J. Gerontol. Biol. Sci. 50A, B117-B127.Google Scholar
  59. Fellowes M. D. E., Kraaijeveld A. R. and Godfray H. C. J. 1999 Cross-resistance following artificial selection for increased defense against parasitoids inDrosophila melanogaster.Evolution 53, 966–972.CrossRefGoogle Scholar
  60. Foley P. A. and Luckinbill L. S. 2001 The effects of selection for larval behaviour on adult life history features inDrosophila melanogaster.Evolution 55, 2493–2502.PubMedGoogle Scholar
  61. Force A. G., Staples T., Soliman S. and Arking R. 1995 Comparative biochemical and stress analysis of genetically selectedDrosophila strains with different longevities.Dev. Genet. 17, 340–351.PubMedCrossRefGoogle Scholar
  62. French V., Feast M. and Partridge L. 1998 Body size and cell size inDrosophila: the developmental response to temperature.J. Insect Physiol. 44, 1081–1089.PubMedCrossRefGoogle Scholar
  63. Fry J. D. 2001 Direct and correlated responses to selection for larval ethanol tolerance inDrosophila melanogaster.J. Evol. Biol. 14, 296–309.CrossRefGoogle Scholar
  64. Gadgil M. and Bossert P. W. 1970 Life historical consequences of natural selection.Am. Nat. 104, 1–24.CrossRefGoogle Scholar
  65. Gasser M., Kaiser M., Berrigan D. and Stearns S. C. 2000 Life history correlates of evolution under high and low adult mortality.Evolution 54, 1260–1272.PubMedGoogle Scholar
  66. Gibbs A. G. 1999 Laboratory selection for the comparative physiologist.J. Exp. Biol. 202, 2709–2718.PubMedGoogle Scholar
  67. Gibbs A. G., Chippindale A. K. and Rose M. R. 1997 Physiological mechanisms of evolved desiccation resistance inDrosophila melanogaster.J. Exp. Biol. 200, 1821–1832.PubMedGoogle Scholar
  68. Gibson J. R., Chippindale A. K. and Rice W. R. 2002 The X chromosome is a hot spot for sexually antagonistic fitness variation.Proc. R. Soc. London B269, 599–505.Google Scholar
  69. Gilchrist A. S. and Partridge L. 1999 A comparison of the genetic basis of wing size divergence in three parallel body size clinesof Drosophila melanogaster.Genetics 153, 1775–1787.PubMedGoogle Scholar
  70. Gilchrist G. W. and Huey R. B. 2001 Parental and developmental temperature effects on the thermal dependence of fitness inDrosophila melanogaster.Evolution 55, 209–214.PubMedGoogle Scholar
  71. Graves J. L. Jr and Mueller L. D. 1993 Population density effects on longevity.Genetica 91, 99–109.PubMedCrossRefGoogle Scholar
  72. Graves J. L., Toolson E. C., Jeong C., Vu L. N. and Rose M. R. 1992 Desiccation, flight, glycogen, and postponed senescence inDrosophila melanogaster.Physiol. Zool. 65, 268–286.Google Scholar
  73. Harshman L. G. and Hoffmann A. A. 2000 Laboratory selection experiments usingDrosophila: what do they really tell us?Trends Ecol. Evol. 15, 32–36.PubMedCrossRefGoogle Scholar
  74. Harshman L. G., Hoffmann A. A. and Clark A. G. 1999 Selection for starvation resistance inDrosophila melanogaster: physiological correlates, enzyme activities and multiple stress responses.J. Evol. Biol. 12, 370–379.CrossRefGoogle Scholar
  75. Hercus M. J. and Hoffmann A. A. 2000 Maternal and grandmaternal age influence offspring fitness inDrosophila.Proc. R. Soc. London B267, 2105–2110.CrossRefGoogle Scholar
  76. Hillesheim E. and Stearns S. C. 1992 Correlated responses in life history traits to artificial selection for body weight inDrosophila melanogaster.Evolution 46, 745–752.CrossRefGoogle Scholar
  77. Hoang A. 2002 Physiological consequences of immune response byDrosophila melanogaster (Diptera: Drosophilidae) against the parasitoidAsobara tabida (Hymenoptera: Braconidae).J. Evol. Biol. 15, 537–543.CrossRefGoogle Scholar
  78. Hoffmann A. A. and Harshman L. G. 1999 Desiccation and starvation resistance inDrosophila: patterns of variation at the species, population and intrapopulation levels.Heredity 83, 637–643.PubMedCrossRefGoogle Scholar
  79. Hoffmann A. A. and McKechnie 1991 Heritable variation in resource utilization and response in a winery population ofDrosophila melanogaster.Evolution 45, 1000–1015.CrossRefGoogle Scholar
  80. Hoffmann A. A. and MerilÄ J. 1999 Heritable variation and evolution under favourable and unfavourable conditions.Trends Ecol. Evol. 14, 96–101.PubMedCrossRefGoogle Scholar
  81. Hoffmann A. A. and Parsons P. A. 1989 An integrated approach to environmental stress tolerance and life history variation: desiccation tolerance inDrosophila.Biol. J. Linn. Soc. 37, 117–136.CrossRefGoogle Scholar
  82. Hoffmann A. A. and Parsons P. A. 1993 Direct and correlated responses to selection for desiccation resistance: a comparison ofDrosophila melanogaster andD. simulans.J. Evol. Biol. 6, 643–657.CrossRefGoogle Scholar
  83. Hoffmann A. A., Hallas R., Sinclair C. and Mitrovski P. 2001a Levels of variation in stress resistance inDrosophila among strains, local populations, and geographic regions: patterns for desiccation, starvation, cold resistance, and associated traits.Evolution 55, 1621–1630.PubMedGoogle Scholar
  84. Hoffmann A. A., Hallas R., Sinclair C. and Partridge L. 2001b Rapid loss of stress resistance inDrosophila melanogaster under adaptation to laboratory culture.Evolution 55, 436–438.PubMedGoogle Scholar
  85. Hoffmann A. A., SØrensen J. G. and Loeschcke V. 2003 Adaptation ofDrosophila to temperature extremes: bringing together quantitative and molecular approaches.J. Therm. Biol. 28, 175–216.CrossRefGoogle Scholar
  86. Houle D. 1991 Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters.Evolution 45, 630–648.CrossRefGoogle Scholar
  87. Houle D. 2001 Characters as the units of evolutionary change. InThe character concept in evolutionary biology (ed. G. P. Wagner). Academic Press, San Diego.Google Scholar
  88. Houle D. and Rowe L. 2003 Natural selection in a bottle.Am. Nat. 161, 50–67.PubMedCrossRefGoogle Scholar
  89. Huey R. B., Partridge L. and Fowler K. 1991 Thermal sensitivity ofDrosophila melanogaster responds rapidly to laboratory natural selection.Evolution 45, 751–756.CrossRefGoogle Scholar
  90. Hutchinson E. W. and Rose M. R. 1991 Quantitative genetics of postponed aging inDrosophila melanogaster. I. Analysis of outbred populations.Genetics 127, 719–727.PubMedGoogle Scholar
  91. Hutchinson E. W., Shaw A. J. and Rose M. R. 1991 Quantitative genetics of postponed aging inDrosophila melanogaster. II. Analysis of selected lines.Genetics 127, 729–737.PubMedGoogle Scholar
  92. Iglesias-Barreira V., Ahn M. T., Reusens B., Dahri S., Hoet J. J. and Remacle C. 1996 Pre- and postnatal low protein diet affect pancreatic islet blood flow and insulin release in adult rats.Endocrinology 137, 3797–3801.PubMedCrossRefGoogle Scholar
  93. Imasheva A. G., Bosenko D. V. and Bubli O. A. 1999 Variation in morphological traits ofDrosophila melanogaster (fruit fly) under nutritional stress.Heredity 82, 187–192.PubMedCrossRefGoogle Scholar
  94. James A. C. and Partridge L. 1995 Thermal evolution of rate of larval development inDrosophila melanogaster in laboratory and field populations.J. Evol. Biol. 8, 315–330.CrossRefGoogle Scholar
  95. James A. C. and Partridge L. 1998 Geographic variation in competitive ability inDrosophila melanogaster.Am. Nat. 151, 530–537.CrossRefPubMedGoogle Scholar
  96. James A. C., Azevedo R. B. R. and Partridge L. 1995 Cellular basis and developmental timing in a size cline ofDrosophila melanogaster.Genetics 140, 659–666.PubMedGoogle Scholar
  97. Jenkins N. L. and Hoffmann A. A. 1994 Genetic and maternal variation for heat resistance inDrosophila from the field.Genetics 137, 783–789.PubMedGoogle Scholar
  98. Jin W., Riley R. M., Wolfinger R. D., White K. P., Passador-Gurgel G. and Gibson G. 2001 The contributions of sex, genotype and age to transcriptional variance inDrosophila melanogaster.Nat. Genet. 29, 389–395.PubMedCrossRefGoogle Scholar
  99. Joshi A. 1997 Laboratory studies of density-dependent selection: adaptations to crowding inDrosophila melanogaster.Curr. Sci. 72, 555–562.Google Scholar
  100. Joshi A. and Mueller L. D. 1988 Evolution of higher feeding rate inDrosophila due to density-dependent natural selection.Evolution 42, 1090–1092.CrossRefGoogle Scholar
  101. Joshi A. and Mueller L. D. 1993 Directional and stabilizing density-dependent natural selection for pupation height inDrosophila melanogaster.Evolution 47, 176–184.CrossRefGoogle Scholar
  102. Joshi A. and Mueller L. D. 1996 Density-dependent natural selection inDrosophila: trade-offs between larval food acquisition and utilization.Evol. Ecol. 10, 463–474.CrossRefGoogle Scholar
  103. Joshi A. and Mueller L. D. 1997 Adult crowding effects on longevity inDrosophila melanogaster: increase in age-independent mortality.Curr. Sci. 72, 255–260.Google Scholar
  104. Joshi A. and Thompson J. N. 1995a Tradeoffs and the evolution of host specialization.Evol. Ecol. 9, 82–92.CrossRefGoogle Scholar
  105. Joshi A. and Thompson J. N. 1995b Alternative routes to the evolution of competitive ability in two competing species ofDrosophila.Evolution 49, 616–625.CrossRefGoogle Scholar
  106. Joshi A. and Thompson J. N. 1996 Evolution of broad and specific competitive ability in novel versus familiar environments inDrosophila species.Evolution 50, 188–194.CrossRefGoogle Scholar
  107. Joshi A., Knight C. D. and Mueller L. D. 1996a Genetics of larval urea tolerance inDrosophila melanogaster.Heredity 77, 33–39.PubMedCrossRefGoogle Scholar
  108. Joshi A., Shiotsugu J. and Mueller L. D. 1996b Phenotypic enhancement of longevity by environmental urea inDrosophila melanogaster.Exp. Gerontol. 31, 533–544.PubMedCrossRefGoogle Scholar
  109. Joshi A., Wu W. P. and Mueller L. D. 1998a Density-dependent natural selection inDrosophila: adaptation to adult crowding.Evol. Ecol. 12, 363–376.CrossRefGoogle Scholar
  110. Joshi A., Oshiro W. A., Shiotsugu J. and Mueller L. D. 1998b Short- and long-term effects of environmental urea on fecundity inDrosophila melanogaster.J. Biosci. 23, 279–283.CrossRefGoogle Scholar
  111. Joshi A., Do M. H. and Mueller L. D. 1999 Poisson distribution of male mating success in laboratory populations ofDrosophila melanogaster.Genet. Res. 73, 239–249.PubMedCrossRefGoogle Scholar
  112. Joshi A., Prasad N. G. and Shakarad M. 2001 K-selection, Deselection, effectiveness and tolerance in competition: densitydependent selection revisited.J. Genet. 80, 63–75.PubMedCrossRefGoogle Scholar
  113. Joshi A., Castillo R. B. and Mueller L. D. 2003 The contribution of ancestry, chance, and past and ongoing selection to adaptive evolution.J. Genet. 82(in press).Google Scholar
  114. Kindlmann P., Dixon A. F. G. and Dostálková I. 2001 Role of ageing and temperature in shaping reaction norms and fecundity functions in insects.J. Evol. Biol. 14, 835–840.CrossRefGoogle Scholar
  115. Kraaijeveld A. R., Limentani E. C. and Godfray H. C. J. 2001 Basis of the trade-off between parasitoid resistance and larval competitive ability inDrosophila melanogaster.Proc. R. Soc. London B268, 259–261.CrossRefGoogle Scholar
  116. Krijger C. L., Peters Y. C. and Sevenster J. G. 2001 Competitive ability of neotropicalDrosophila predicted from larval development times.Oikos 92, 325–332.CrossRefGoogle Scholar
  117. Kyriacou C. P., Oldroyd M., Wood J., Sharp M. and Hill M. 1990 Clock mutations alter developmental timing inDrosophila.Heredity 64, 395–401.PubMedCrossRefGoogle Scholar
  118. Leary R. F. and Allendorf F. W. 1989 Fluctuating asymmetry as an indicator of stress: implications for conservation biology.Trends Ecol. Evol. 4, 214–217.CrossRefGoogle Scholar
  119. Leips J. and Mackay T. F. C. 2000 Quantitative trait loci for life span inDrosophila melanogaster: interactions with genetic background and larval density.Genetics 155, 1773–1788.PubMedGoogle Scholar
  120. Leroi A. M., Chen W. R. and Rose M. R. 1994a Long term laboratory evolution of a genetic trade-off inDrosophila melanogaster. 2. Stability of genetic correlations.Evolution 48, 1258–1268.CrossRefGoogle Scholar
  121. Leroi A. M., Chippindale A. K. and Rose M. R. 1994b Long term laboratory evolution of a genetic trade-off inDrosophila melanogaster. 1. The role of genotype x environment interaction.Evolution 48, 1244–1257.CrossRefGoogle Scholar
  122. Leroi A. M., Kim S. B. and Rose M. R. 1994c The evolution of phenotypic life history trade-offs: an experimental study usingDrosophila melanogaster.Am. Nat. 144, 661–676.CrossRefGoogle Scholar
  123. Leroi A. M., Rose M. R. and Lauder G. V. 1994d What does the comparative method reveal about adaptation?Am. Nat. 143, 381–402.CrossRefGoogle Scholar
  124. Lewontin R. C. 2000 The problems of population genetics. InEvolutionary genetics: from molecules to morphology (ed. R. S. Singh and C. B. Krimbas), pp. 5–23. Cambridge University Press, Cambridge.Google Scholar
  125. Linnen C., Tatar M. and Promislow D. 2001 Cultural artifacts: a comparison of senescence in natural, laboratory-adapted and artificially selected lines ofDrosophila melanogaster.Evol. Ecol. Res. 3, 877–888.Google Scholar
  126. Lints F. A. 1978Genetics and ageing. Karger, Basel.Google Scholar
  127. Lints F. A. 1988 Genetics. InDrosophila as a model organism for ageing studies (ed. F. A. Lints and M. Soliman), pp. 99–118. Blackie, London.Google Scholar
  128. Loeschcke V. and Krebs R. A. 1996 Selection for heat-shock resistance in larval and in adultDrosophila buzzatii: comparing direct and indirect responses.Evolution 50, 2354–2359.CrossRefGoogle Scholar
  129. Luckinbill L. S. and Clare M. J. 1985 Selection for lifespan inDrosophila melanogaster.Heredity 55, 9–18.PubMedCrossRefGoogle Scholar
  130. Luckinbill L. S. and Clare M. J. 1986 A density threshold for the expression of longevity inDrosophila melanogaster.Heredity 56, 329–335.PubMedCrossRefGoogle Scholar
  131. Luckinbill L. S., Arking R., Clare M. J., Cirocco W. and Buck S. 1984 Selection for delayed senescence inDrosophila melanogaster.Evolution 38, 996–1003.CrossRefGoogle Scholar
  132. Luckinbill L. S., Graves J. L., Tomkin A. and Sowirka O. 1988 A qualitative analysis of some life history correlates of longevity inDrosophila melanogaster.Evol. Ecol. 2, 85–94.CrossRefGoogle Scholar
  133. McCabe C. and Birley A. 1998 Oviposition in theperiod genotypes ofDrosophila melanogaster.Chronobiol. Int. 15, 119–133.PubMedCrossRefGoogle Scholar
  134. McCabe J. and Partridge L. 1997 An interaction between environmental temperature and genetic variation for body size for the fitness of adult femaleDrosophila melanogaster.Evolution 51, 1164–1174.CrossRefGoogle Scholar
  135. McDonald M. J. and Rosbash M. 2001 Microarray analysis and organization of circadian gene expression inDrosophila.Cell 107, 567–578.PubMedCrossRefGoogle Scholar
  136. McKenzie J. A. and Parsons P. A. 1972 Alcohol tolerance: an ecological parameter in the relative success ofDrosophila melanogaster andD. simulans.Oecologia 10, 373–388.CrossRefGoogle Scholar
  137. Markow T. A. 1995 Evolutionary ecology and developmental instability.Annu. Rev. Entomol. 40, 105–120.CrossRefGoogle Scholar
  138. Matos M. and Avelar T. 2001 Adaptation to the laboratory: comments on SgrÒ and Partridge.Am. Nat. 158, 655–656.CrossRefPubMedGoogle Scholar
  139. Matos M., Rose M. R., Rocha Pité M. T., Rego C. and Avelar T. 2000a Adaptation to the laboratory environment inDrosophila subobscura.J. Evol. Biol. 13, 9–19.CrossRefGoogle Scholar
  140. Matos M., Rego C., Levy A., Teotónio H. and Rose M. R. 2000b An evolutionary no man’s land.Trends Ecol. Evol. 15, 206.PubMedCrossRefGoogle Scholar
  141. Medawar P. B. 1952An unsolved problem of biology. H. R. Lewis, London.Google Scholar
  142. Miyatake T. 1997 Correlated responses to selection for developmental period inBactrocera cucurbitae (Diptera: Tephritidae): time of mating and daily activity rhythms.Behav. Genet. 27, 489–498.PubMedCrossRefGoogle Scholar
  143. Miyatake T. 2002 Circadian rhythm and time of mating inBactrocera cucurbitae (Diptera: Tephritidae) selected for age at reproduction.Heredity 88, 302–306.PubMedCrossRefGoogle Scholar
  144. Moreteau B., Gibert P., Pétavy G., Moreteau J-C., Huey R. B. and David J. R. 2003 Morphometrical evolution in aDrosophila clade: theDrosophila obscura group.J. Zool. Syst. Evol. Res. 41, 64–71.CrossRefGoogle Scholar
  145. Mousseau T. A. and Fox C. W. 1998Maternal effects as adaptations. Oxford University Press, Oxford.Google Scholar
  146. Mueller L. D. 1985 The evolutionary ecology ofDrosophila.Evol. Biol. 19, 37–98.Google Scholar
  147. Mueller L. D. 1987 Evolution of accelerated senescence in laboratory populations ofDrosophila.Proc. Natl. Acad. Sci. USA 84, 1974–1977.PubMedCrossRefGoogle Scholar
  148. Mueller L. D. 1988a Density-dependent population growth and natural selection in food limited environments: theDrosophila model.Am. Nat. 132, 786–809.CrossRefGoogle Scholar
  149. Mueller L. D. 1988b Evolution of competitive ability inDrosophila due to density-dependent selection.Proc. Natl. Acad. Sci. USA 85, 4383–4386.PubMedCrossRefGoogle Scholar
  150. Mueller L. D. 1990 Density-dependent selection does not increase efficiency.Evol. Ecol. 4, 290–297.CrossRefGoogle Scholar
  151. Mueller L. D. 1997 Theoretical and empirical examination of density-dependent selection.Annu. Rev. Ecol. Syst. 28, 269–288.CrossRefGoogle Scholar
  152. Mueller L. D. and Ayala F. J. 1981 Trade-off between r-selection and K-selection inDrosophila populations.Proc. Natl. Acad. Sci. USA 78, 1303–1305.PubMedCrossRefGoogle Scholar
  153. Mueller L. D. and Huynh P. T. 1994 Ecological determinants of stability in model populations.Ecology 75, 430–437.CrossRefGoogle Scholar
  154. Mueller L. D. and Joshi A. 2000Stability in model populations. Princeton University Press, Princeton.Google Scholar
  155. Mueller L. D. and Rose M. R. 1996 Evolutionary theory predicts late-life mortality plateaus.Proc. Natl. Acad. Sci. USA 93, 15249–15253.PubMedCrossRefGoogle Scholar
  156. Mueller L. D. and Sweet V. F. 1986 Density-dependent natural selection inDrosophila: evolution of pupation height.Evolution 40, 1354–1356.CrossRefGoogle Scholar
  157. Mueller L. D., González-Candelas F. and Sweet V. F. 1991 Components of density-dependent population dynamics: models and tests withDrosophila.Am. Nat. 137, 457–475.CrossRefGoogle Scholar
  158. Mueller L. D., Graves J. L. and Rose M. R. 1993 Interactions between density-dependent and age-specific selection inDrosophila melanogaster.Func. Ecol. 7, 469–479.CrossRefGoogle Scholar
  159. Mueller L. D., Joshi A. and Borash D. J. 2000 Does population stability evolve?Ecology 81, 1273–1285.CrossRefGoogle Scholar
  160. Myers E. M., Yu J. and Sehgal A. 2003 Circadian control of eclosion: interaction between a central and peripheral clock inDrosophila melanogaster.Curr. Biol. 13, 526–533.PubMedCrossRefGoogle Scholar
  161. Neat F., Fowler K., French V. and Partridge L. 1995 Thermal evolution of growth efficiency inDrosophila melanogaster.Proc. R. Soc. London B260, 73–78.CrossRefGoogle Scholar
  162. Novoseltsev V. N., Arking R., Novoseltseva J. A. and Yashin A. I. 2002 Evolutionary optimality applied toDrosophila experiments: hypothesis of constrained reproductive efficiency.Evolution 56, 1136–1149.PubMedGoogle Scholar
  163. Nunney L. 1983 Sex differences in larval competition inDrosophila melanogaster: the testing of a competition model and its relevance to frequency-dependent selection.Am. Nat. 121, 67–93.CrossRefGoogle Scholar
  164. Nunney L. 1990Drosophila on oranges: colonization, competition and coexistence.Ecology 71, 1904–1915.CrossRefGoogle Scholar
  165. Nunney L. 1996 The response to selection for fast larval development inDrosophila melanogaster and its effect on adult weight: an example of a fitness trade-off.Evolution 50, 1193–1204.CrossRefGoogle Scholar
  166. Nusbaum T. J., Mueller L. D. and Rose M. R. 1996 Evolutionary patterns among measures of aging.Exp. Gerontol. 31, 507–516.PubMedCrossRefGoogle Scholar
  167. Nuzhdin S. V., Pasyukova E. G., Dilda C. L., Zeng Z-B. and Mackay T. F. C. 1997 Sex-specific quantitative trait loci affecting longevity inDrosophila melanogaster.Proc. Natl. Acad. Sci. USA 94, 9734–9739.PubMedCrossRefGoogle Scholar
  168. Oklejewicz M. M. 2001The rate of living in tau mutant syrian hamsters. Ph. D. thesis, University of Groningen, Groningen, The Netherlands.Google Scholar
  169. Palmer A. R. and Strobeck C. 2003 Fluctuating asymmetry analyses revisited. InDevelopmental instability: causes and consequences (ed. M. Polak), pp. 279–319. Oxford University Press, New York.Google Scholar
  170. Paranjpe D. A., Anitha D., Kumar S., Kumar D., Verkhedkar K., Chandrashekaran M. K., Joshi A. and Sharma V. K. 2003 Entrainment of eclosion rhythm inDrosophila melanogaster populations reared for more than 700 generations in constant light environment.Chronobiol. Int. 20, 1–11.CrossRefGoogle Scholar
  171. Partridge L. and Andrews R. 1985 The effect of reproductive activity on the longevity of maleDrosophila melanogaster is not caused by an acceleration of ageing.J. Insect Physiol. 31, 393–395.CrossRefGoogle Scholar
  172. Partridge L. and Barton N. H. 1993a Evolution of aging: testing the theory usingDrosophila.Genetica 91, 89–98.PubMedCrossRefGoogle Scholar
  173. Partridge L. and Barton N. H. 1993b Optimality, mutation and the evolution of ageing.Nature 362, 305–311.PubMedCrossRefGoogle Scholar
  174. Partridge L. and Fowler K. 1991 Non-mating costs of exposure to males in femaleDrosophila melanogaster.J. Insect Physiol. 36, 419–425.CrossRefGoogle Scholar
  175. Partridge L. and Fowler K. 1992 Direct and correlated responses to selection on age at reproduction inDrosophila melanogaster.Evolution 46, 76–91.CrossRefGoogle Scholar
  176. Partridge L. and Fowler K. 1993 Responses and correlated responses to artificial selection on thorax length inDrosophila melanogaster.Evolution 47, 213–226.CrossRefGoogle Scholar
  177. Partridge L. and Gems D. 2002 Mechanisms of ageing: public or private.Nat. Rev. Genet. 31, 165–175.CrossRefGoogle Scholar
  178. Partridge L. and Harvey L. 1985 Costs of reproduction.Nature 316, 20–21.CrossRefGoogle Scholar
  179. Partridge L. and Sibly R. 1991 Constraints in the evolution of life-histories.Phil. Trans. R. Soc. London B332, 3–13.Google Scholar
  180. Partridge L., Fowler K., Trevitt S. and Sharp W. 1986 An examination of the effects of males on the survival and eggproduction rates of femaleDrosophila melanogaster.J. Insect Physiol. 32, 925–929.CrossRefGoogle Scholar
  181. Partridge L., Ewing A. and Chandler A. 1987a Male size and mating success inDrosophila melanogaster: the roles of male and female behaviour.Anim. Behav. 35, 555–562.CrossRefGoogle Scholar
  182. Partridge L., Green A. and Fowler K. 1987b Effects of eggproduction and of exposure to males on female survival inDrosophila melanogaster.J. Insect Physiol. 33, 745–749.CrossRefGoogle Scholar
  183. Partridge L., Hoffmann A. A., and Jones J. S. 1987c Male size and mating success inDrosophila melanogaster andD. pseudoobscura under field conditions.Anim. Behav. 35, 468–476.CrossRefGoogle Scholar
  184. Partridge L., Barrie B., Fowler K. and French V. 1994a Thermal evolution of pre-adult life history traits inDrosophila melanogaster.J. Evol. Biol. 7, 645–663.CrossRefGoogle Scholar
  185. Partridge L., Barrie B., Fowler K. and French V. 1994b Evolution and development of body size and cell size inDrosophila melanogaster in response to temperature.Evolution 48, 1269–1276.CrossRefGoogle Scholar
  186. Partridge L., Barrie B., Barton N. H., Fowler K. and French V. 1995 Rapid laboratory evolution of adult life history traits inDrosophila melanogaster in response to temperature.Evolution 49, 538–544.CrossRefGoogle Scholar
  187. Partridge L., Prowse N. and Pignatelli P. 1999a Another set of responses and correlated responses to selection on age at reproduction inDrosophila melanogaster.Proc. R. Soc. London B266, 255–261.CrossRefGoogle Scholar
  188. Partridge L., Langelan R., Fowler K., Zwaan B. J. and French V. 1999b Correlated responses to selection on body size inDrosophila melanogaster.Genet. Res. 74, 43–54.PubMedCrossRefGoogle Scholar
  189. Pérez A. and Garcia C. 2002 Evolutionary responses ofDrosophila melanogaster to selection at different larval densities: changes in genetic variation, specialization and phenotypic plasticity.J. Evol. Biol. 15, 524–536.CrossRefGoogle Scholar
  190. Phelan J. P., Archer M. A., Beckman K. A., Chippindale A. K., Nusbaum T. J. and Rose M. R. 2003 Breakdown in correlations during laboratory evolution. I. Comparative analyses ofDrosophila populations.Evolution 57, 527–535.PubMedGoogle Scholar
  191. Pittendrigh C. S. 1960 Circadian rhythms and the circadian organization of living systems.Cold Spring Harbor Symp. Quant. Biol. 25, 159–184.PubMedGoogle Scholar
  192. Pittendrigh C. S. 1993 Temporal organization: reflections of a Darwinian clock-watcher.Annu. Rev. Physiol. 55, 17–54.CrossRefGoogle Scholar
  193. Pittendrigh C. S. and Skopik S. D. 1970 Circadian systems, V. The driving oscillation and the temporal sequence of development.Proc. Natl. Acad. Sci. USA 65, 500–507.PubMedCrossRefGoogle Scholar
  194. Pletcher S. D., Macdonald S. J., Marguerie R., Certa U., Stearns S. C. and Partridge L. 2002 Genome-wide transcript profiles in aging and calorically restrictedDrosophila melanogaster. Curr.Biol. 12, 712–723.Google Scholar
  195. Prasad N. G., Shakarad M., Gohil V. M., Sheeba V., Rajamani M. and Joshi A. 2000 Evolution of reduced pre-adult viability and larval growth rate in laboratory populations ofDrosophila melanogaster selected for shorter development time.Genet. Res. 76, 249–259.PubMedCrossRefGoogle Scholar
  196. Prasad N. G., Shakarad M., Anitha D., Rajamani M. and Joshi A. 2001 Correlated responses to selection for faster development and early reproduction inDrosophila: the evolution of larval traits.Evolution 55, 1363–1372.PubMedGoogle Scholar
  197. Prasad N. G., Dey S., Shakarad M. and Joshi A. 2003a The evolution of population stability as a by-product of life history evolution.Biol. Lett. 03bl0037: S1-S3; DOI: 10.1098/ rsbl.2003.0020.Google Scholar
  198. Prasad N. G., Shakarad M., Rajamani M. and Joshi A. 2003b Interaction between the effects of maternal and larval nutritional levels on pre-adult survival inDrosophila melanogaster.Evol. Ecol. Res. 5, 903–911.Google Scholar
  199. Price C. S. C., Dyer K. A. and Coyne J. A. 1999 Sperm competition betweenDrosophila males involves both displacement and incapacitation.Nature 400, 449–452.PubMedCrossRefGoogle Scholar
  200. Price T. and Schluter D. 1991 On the low heritability of life history traits.Evolution 45, 853–861.CrossRefGoogle Scholar
  201. Prout T. and Barker J. S. F. 1989 Ecological aspects of the heritability of body size inDrosophila buzzatii.Genetics 123, 803–813.PubMedGoogle Scholar
  202. Qiu J. and Hardin P. E. 1996 Developmental state and the circadian clock interact to influence the timing of eclosion inDrosophila melanogaster.J. Biol. Rhythms 11, 75–86.PubMedCrossRefGoogle Scholar
  203. Ravelli A. C. J., van der Meulen J. H. P., Michels R. P. J., Osmond C., Barker D. J. P., Hales C. N. and Bleker O. P. 1998 Glucose tolerance in adults after prenatal exposure to famine.Lancet 351, 173–177.PubMedCrossRefGoogle Scholar
  204. Reeve J. P. and Fairbairn D. J. 1996 Sexual size dimorphism as a correlated response to selection on body size: an empirical test of the quantitative genetic model.Evolution 50, 1927–1938.CrossRefGoogle Scholar
  205. Reeve J. P. and Fairbairn D. J. 1999 Change in sexual size dimorphism as a correlated response to selection on fecundity.Heredity 83, 697–706.PubMedCrossRefGoogle Scholar
  206. Reeve M. W., Fowler K. and Partridge L. 2000 Increased body size confers greater fitness at lower experimental temperature in maleDrosophila melanogaster.J. Evol. Biol. 13, 836–844.CrossRefGoogle Scholar
  207. Reznick D. 1992 Measuring the costs of reproduction.Trends Ecol. Evol. 7, 42–45.CrossRefGoogle Scholar
  208. Reznick D. and Travis J. 1996 The empirical study of adaptation in natural populations. InAdaptation (ed. M. R. Rose and G. V. Lauder), pp. 243–289. Academic Press, San Diego.Google Scholar
  209. Reznick D., Bryant M. J. and Bashey F. 2002r- andK- selection revisited: the role of population regulation in life history evolution.Ecology 83, 1509–1520.Google Scholar
  210. Rhen T. 2000 Sex-limited mutations and the evolution of sexual dimorphism.Evolution 54, 37–43.PubMedGoogle Scholar
  211. Rice S. H. 2002 A general population genetic theory for the evolution of developmental interactions.Proc. Natl. Acad. Sci. USA 99, 15518–15523.PubMedCrossRefGoogle Scholar
  212. Rice W. R. and Chippindale A. K. 2001 Intersexual ontogenetic conflict.J. Evol. Biol. 14, 685–693.CrossRefGoogle Scholar
  213. Rice W. R. and Chippindale A. K. 2002 The evolution of hybrid infertility: perpetual coevolution between gender-specific and sexually antagonistic genes.Genetica 116, 179–188.PubMedCrossRefGoogle Scholar
  214. Robertson F. W. 1957a Studies in quantitative inheritance X. Genetic variation of ovary size inDrosophila.J. Genet. 55, 410–427.CrossRefGoogle Scholar
  215. Robertson F. W. 1957b Studies in quantitative inheritance XI. Genetic and environmental correlation between body size and egg production inDrosophila melanogaster.J. Genet. 55, 428–443.CrossRefGoogle Scholar
  216. Robertson F. W. 1959 Studies in quantitative inheritance XII. Cell size and number in relation to genetic and environmental variation of body size inDrosophila.Genetics 44, 869–896.PubMedGoogle Scholar
  217. Robertson F. W. 1960 The ecological genetics of growth inDrosophila 1. Body size and developmental time on different diets.Genet Res. 1, 288–304.Google Scholar
  218. Robertson F. W. 1963 The ecological genetics of growth inDrosophila 6. The genetic correlation between the duration of the larval period and body size in relation to larval diet.Genet. Res. 4, 74–92.CrossRefGoogle Scholar
  219. Robertson F. W. and Sang J. H. 1944 The ecological determinants of population growth in aDrosophila culture. I. Fecundity of adult flies.Proc. R. Soc. London B132, 258–277.CrossRefGoogle Scholar
  220. Robinson S. J. W. and Partridge L. 2001 Temperature and clinal variation in larval growth efficiency inDrosophila melanogaster.J. Evol. Biol. 14, 14–21.CrossRefGoogle Scholar
  221. Roff D. A. 1992The evolution of life histories: theory and analysis. Chapman and Hall, London.Google Scholar
  222. Roper C., Pignatelli P. and Partridge L. 1993 Evolutionary effects of selection on age at reproduction in larval and adultDrosophila melanogaster.Evolution 47, 445–455.CrossRefGoogle Scholar
  223. Roper C., Pignatelli P. and Partridge L. 1996 Evolutionary responses ofDrosophila melanogaster life history to differences in larval density.J. Evol. Biol. 9, 609–622.CrossRefGoogle Scholar
  224. Rose M. R. 1983 Theories of life history evolution.Am. Zool. 23, 15–23.Google Scholar
  225. Rose M. R. 1984 Laboratory evolution of postponed senescence inDrosophila melanogaster.Evolution 38, 1004–1010.CrossRefGoogle Scholar
  226. Rose M. R. 1989 Genetics of increased lifespan inDrosophila.BioEssays 11, 132–135.PubMedCrossRefGoogle Scholar
  227. Rose M. R. 1997 Toward an evolutionary demography. InBetween Zeus and the salmon: the biodemography of longevity (ed. K. W. Wachter and C. E. Finch), pp. 96–107. National Academy Press, Washington.Google Scholar
  228. Rose M. R. and Bradley T. J. 1998 Evolutionary physiology of the cost of reproduction.Oikos 83, 443–451.CrossRefGoogle Scholar
  229. Rose M. R. and Charlesworth B. 1981 Genetics of life history inDrosophila melanogaster. II. Exploratory selection experiments.Genetics 97, 187–196.PubMedGoogle Scholar
  230. Rose M. R., Service P. M. and Hutchinson E. W. 1987 Three approaches to trade-offs in life history evolution. InGenetic constraints on adaptive evolution (ed. V. Loeschcke), pp. 99–105. Springer, Berlin.Google Scholar
  231. Rose M. R., Graves J. L. and Hutchinson E. W. 1990 The use of selection to probe patterns of pleiotropy in fitness characters. InInsect life cycles: genetics, evolution and coordination (ed. F Gilbert), pp. 29–41. Springer, New York.Google Scholar
  232. Rose M. R., Vu L. N., Park S. U. and Graves J. L. 1992 Selection on stress resistance increases longevity inDrosophila melanogaster.Exp. Gerontol. 27, 241–250.PubMedCrossRefGoogle Scholar
  233. Rose M. R., Nusbaum T. J. and Chippindale A. K. 1996 Laboratory evolution: the experimental wonderland and the Cheshire Cat syndrome. InAdaptation (ed. M. R. Rose and G. V. Lauder), pp. 221–241. Academic Press, San Diego.Google Scholar
  234. Rossiter M. C. 1996 Incidence and consequences of inherited environmental effects.Annu. Rev. Ecol. Syst. 27, 451–476.CrossRefGoogle Scholar
  235. Rossiter M. C. 1998 The role of environmental variation in parental effects expression. InMaternal effects as adaptations (ed. T. A. Mousseau and C. W. Fox), pp. 112–136. Oxford University Press, Oxford.Google Scholar
  236. Sakai T. and Ishida N. 2001 Circadian rhythm of female mating activity governed by clock genes inDrosophila.Proc. Natl. Acad. Sci. USA 98, 9221–9225.PubMedCrossRefGoogle Scholar
  237. Sang J. H. 1950 Population growth inDrosophila cultures.Biol. Rev. 25, 188–219.CrossRefGoogle Scholar
  238. Sang J. H. 1956 The quantitative nutritional requirements ofDrosophila melanogaster.J. Exp. Biol. 33, 45–72.Google Scholar
  239. Sang J. H. and Clayton G. A. 1975 Selection for larval development time inDrosophila.J. Hered. 48, 265–270.Google Scholar
  240. Santos M. 1996 Apparent directional selection of body size inDrosophila buzzatii: larval crowding and male mating success.Evolution 50, 2530–2535.CrossRefGoogle Scholar
  241. Santos M., Ruiz A., Barbadilla A., Quezada-Diaz J. E., Hasson E. and Fontdevila A. 1988 The evolutionary history ofDrosophila buzzatii. XIV. Larger flies mate more often in nature.Heredity 61, 255–262.CrossRefGoogle Scholar
  242. Santos M., Fowler K. and Partridge L. 1994 Gene-environment interaction for body size and larval density inDrosophila melanogaster: an investigation of effects on development time, thorax length and adult sex ratio.Heredity 72, 515–521.PubMedCrossRefGoogle Scholar
  243. Santos M., Borash D. J., Joshi A., Bounlutay N. and Mueller L. D. 1997 Density-dependent natural selection inDrosophila: evolution of growth rate and body size.Evolution 51, 420–432.CrossRefGoogle Scholar
  244. Santos M., Eisses K. T. and Fontdevila A. 1999 Competition and genotype-by-environment interaction in natural breeding substrates ofDrosophila.Evolution 53, 175–186.CrossRefGoogle Scholar
  245. Scheiner S. M. 2002 Selection experiments and the study of phenotypic plasticity.J. Evol. Biol. 15, 889–898.CrossRefGoogle Scholar
  246. Schlichting C. D. and Pigliucci M. 1998Phenotypic evolution: a reaction norm perspective. Sinauer, Sunderland.Google Scholar
  247. Service P. M. 1987 Physiological mechanisms of increased stress resistance inDrosophila melanogaster selected for postponed senescence.Physiol. Zool. 60, 321–326.Google Scholar
  248. Service P. M. and Rose M. R. 1985 Genetic covariation among life history components: the effects of novel environments.Evolution 39, 943–945.CrossRefGoogle Scholar
  249. Service P. M., Hutchinson E. W., Mackinley M. D. and Rose M. R. 1985 Resistance to environmental stress inDrosophila melanogaster selected for postponed senescence.Physiol. Zool. 58, 380–389.Google Scholar
  250. Service P. M., Hutchinson E. W. and Rose M. R. 1988 Multiple genetic mechanisms for the evolution of senescence inDrosophila melanogaster.Evolution 42, 708–716.CrossRefGoogle Scholar
  251. SgrÒ C. M. and Partridge L. 1999 A delayed wave of death from reproduction inDrosophila.Science 286, 2521–2524.PubMedCrossRefGoogle Scholar
  252. SgrÒ C. M. and Partridge L. 2000 Evolutionary responses of the life history of wild caughtDrosophila melanogaster to two standard methods of laboratory culture.Am. Nat. 156, 341–353.CrossRefGoogle Scholar
  253. SgrÒ C. M. and Partridge L. 2001 Laboratory adaptation of life history inDrosophila.Am. Nat. 158, 657–658.CrossRefPubMedGoogle Scholar
  254. Shakarad M., Prasad N. G., Rajamani M. and Joshi A. 2001 Evolution of faster development does not lead to greater fluctuating asymmetry of sternopleural bristle number inDrosophila.J. Genet. 80, 1–7.PubMedCrossRefGoogle Scholar
  255. Sharma V. K. and Joshi A. 2002 Clocks, genes and evolution: the evolutionary genetics of circadian organization. InBiological clocks (ed. V. Kumar), pp. 5–23. Narosa, New Delhi, and Springer, Berlin.Google Scholar
  256. Sharmila Bharathi N., Prasad N. G., Shakarad M. and Joshi A. 2003 Variation in adult life-history and stress resistance across five species ofDrosophila.J. Genet. 82(in press).Google Scholar
  257. Sheeba V. 2002Probing the adaptive significance of circadian rhythms using Drosophila melanogaster. Ph. D. thesis, Manipal Academy of Higher Education, Manipal, India.Google Scholar
  258. Sheeba V., Sharma V. K., Chandrashekaran M. K. and Joshi A. 1999a Persistence of eclosion rhythm in the fruitflyDrosophila melanogaster after 600 generations in an aperiodic environment.Naturwissenschaften 86, 448–449.PubMedCrossRefGoogle Scholar
  259. Sheeba V., Sharma V. K., Chandrashekaran M. K. and Joshi A. 1999b Effect of different light regimes on pre-adult fitness inDrosophila melanogaster populations reared in constant light for over six hundred generations.Biol. Rhythm Res. 30, 424–433.CrossRefGoogle Scholar
  260. Sheeba V., Sharma V. K., Chandrashekaran M. K. and Joshi A. 2000 The effect of different light regimes on adult lifespan inDrosophila melanogaster is partly mediated through reproductive output.J. Biol. Rhythms 15, 380–392.PubMedCrossRefGoogle Scholar
  261. Sheeba V., Chandrashekaran M. K., Joshi A. and Sharma V. K. 2001 Persistence of oviposition rhythm in individuals ofDrosophila melanogaster reared in an aperiodic environment for several hundred generations.J. Exp. Zool. 290, 541–549.PubMedCrossRefGoogle Scholar
  262. Shiotsugu J., Leroi A. M., Yashiro H., Rose M. R. and Mueller L. D. 1997 The symmetry of correlated responses in adaptive evolution: an experimental study usingDrosophila.Evolution 51, 163–172.CrossRefGoogle Scholar
  263. Simmons F. H. and Bradley T. J. 1997 An analysis of resource allocation in response to dietary yeast inDrosophila melanogaster.J. Insect Physiol. 43, 779–788.PubMedCrossRefGoogle Scholar
  264. Sinervo B. and Svensson E. 2002 Correlational selection and the evolution of genomic architecture.Heredity 89, 329–338.PubMedCrossRefGoogle Scholar
  265. Sokolowski M. B., Pereira H. S. and Hughes K. 1997 Evolution of foraging behaviour inDrosophila by density-dependent selection.Proc. Natl. Acad. Sci. USA 94, 7373–7377.PubMedCrossRefGoogle Scholar
  266. Stearns S. C. 1992The evolution of life histories. Oxford University Press, Oxford.Google Scholar
  267. Steppan S. J., Phillips P. C. and Houle D. 2002 Comparative quantitative genetics: evolution of theG matrix.Trends Ecol. Evol. 17, 320–327.CrossRefGoogle Scholar
  268. Sun J., Folk D., Bradley T. J. and Tower J. 2002 Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adultDrosophila melanogaster.Genetics 161, 661–672.PubMedGoogle Scholar
  269. Tantawy A. O. and El-Helw M. R. 1970 Studies on natural populations ofDrosophila. IX. Some fitness components and their heritabilities in natural and mutant populations ofDrosophila melanogaster.Genetics 64, 79–91.PubMedGoogle Scholar
  270. Tatar M. 1999 Transgenes in the analysis of lifespan and fitness.Am. Nat. 154, S67-S81.CrossRefGoogle Scholar
  271. Tauber E., Roe H., Costa R., Hennessy J. M. and Kyriakou C. P. 2003 Temporal mating isolation driven by a behavioural gene inDrosophila.Curr. Biol. 13, 140–145.PubMedCrossRefGoogle Scholar
  272. Teótonio H. and Rose M. R. 2000 Variation in the reversibility of evolution.Nature 408, 463–466.PubMedCrossRefGoogle Scholar
  273. Teótonio H. and Rose M. R. 2001 Perspective: reverse evolution.Evolution 55, 653–660.PubMedCrossRefGoogle Scholar
  274. Teótonio H., Matos M. and Rose M. R. 2002 Reverse evolution of fitness inDrosophila melanogaster.J. Evol. Biol. 15, 608–617.CrossRefGoogle Scholar
  275. Thomas R. H. 1993 Ecology of body size inDrosophila buzzatii: untangling the effects of temperature and nutrition.Ecol. Entomol. 18, 84–90.CrossRefGoogle Scholar
  276. Toma D. P., White K. P., Hirsch J. and Greenspan R. J. 2002 Identification of genes involved inDrosophila melanogaster geotaxis, a complex behavioural trait.Nat. Genet. 31, 349–350.PubMedGoogle Scholar
  277. Tower J. 2000 Transgenic methods for increasingDrosophila lifespan.Mech. Ageing Dev. 118, 1–14.PubMedCrossRefGoogle Scholar
  278. Travis J. and Mueller L. D. 1989 Blending ecology and genetics: progress toward a unified population biology. InPerspectives in ecological theory (ed. J. Roughgarden, R. M. May and S. A. Levin), pp. 101–124. Princeton University Press, Princeton.Google Scholar
  279. Trevitt S., Fowler K. and Partridge L. 1988 An effect of egg production on the subsequent fertility and remating frequency of femaleDrosophila melanogaster.J. Insect Physiol. 34, 821–828.CrossRefGoogle Scholar
  280. Tucic N. 1979 Genetic capacity for adaptation to cold resistance at different developmental stages ofDrosophila melanogaster.Evolution 33, 350–358.CrossRefGoogle Scholar
  281. Tyler R. H., Brar H., Singh M., Latorre A., Graves J. L.et al. 1993 The effect of superoxide dismutase alleles on ageing inDrosophila.Genetica 91, 143–149.PubMedCrossRefGoogle Scholar
  282. van der Have T. M. and de Jong G. 1996 Adult size in ectotherms: temperature effects on growth and differentiation.J. Theor. Biol. 183, 329–340.CrossRefGoogle Scholar
  283. van Noordwijk A. J. and de Jong G. 1986 Acquisition and allocation of resources: their influence on variation in life history tactics.Am. Nat. 128, 137–142.CrossRefGoogle Scholar
  284. Via S., Gomulkiewicz R., de Jong G., Scheiner S. M., Schlichting C. D. and van Tienderen P. M. 1995 Adaptive phenotypic plasticity: consensus and controversy.Trends Ecol. Evol. 10, 212–217.CrossRefGoogle Scholar
  285. Vieira C., Pasyukova E. G., Zeng Z. B., Hackett J. B., Lyman R. F. and Mackay T. F. C. 2000 Genotype-environment interaction for quantitative trait loci affecting life span inDrosophila melanogaster.Genetics 154, 213–227.PubMedGoogle Scholar
  286. Wagner G. P. 1989 Multivariate mutation-selection balance with constrained pleiotropic effects.Genetics 122, 223–234.PubMedGoogle Scholar
  287. Wagner G. P. and Mezey J. 2000 Modeling the evolution of genetic architecture: a continuum of alleles model with pairwise A x A epistasis.J. Theor. Biol. 203, 163–175.PubMedCrossRefGoogle Scholar
  288. Watson M. J. O. and Hoffmann A. A. 1996 Cross-generation effects for cold resistance in tropical populations ofDrosophila melanogaster andD. simulans.Aust. J. Zool. 43, 51–58.CrossRefGoogle Scholar
  289. White K. P., Hurban P., Watanabe T. and Hogness D. S. 1997 Coordination ofDrosophila metamorphosis by two ecdysone-induced nuclear receptors.Science 276, 114–117.PubMedCrossRefGoogle Scholar
  290. White K. P., Rifkin S. A., Hurban P. and Hogness D. S. 1999 Microarray analysis ofDrosophila development during metamorphosis.Science 286, 2179–2184.PubMedCrossRefGoogle Scholar
  291. Wilkinson G. S. 1987 Equilibrium analysis of sexual selection inDrosophila melanogaster.Evolution 41, 11–21.CrossRefGoogle Scholar
  292. Williams A. E. and Bradley T. J. 1998 The effect of respiratory pattern on water loss in desiccation resistantDrosophila melanogaster.J. Exp. Biol. 201, 2953–2959.PubMedGoogle Scholar
  293. Williams A. E., Rose M. R. and Bradley T. J. 1997 CO2 release patterns inDrosophila melanogaster: the effect of selection for desiccation resistance.J. Exp. Biol. 200, 615–624.PubMedGoogle Scholar
  294. Williams A. E., Rose M. R. and Bradley T. J. 1998 Using laboratory selection for desiccation resistance to examine the relationship between respiratory pattern and water loss in insects.J. Exp. Biol. 201, 2945–2952.PubMedGoogle Scholar
  295. Williams G. C. 1957 Pleiotropy, natural selection, and the evolution of senescence.Evolution 11, 398–411.CrossRefGoogle Scholar
  296. Worley A. C., Houle D. and Barrett S. C. H. 2003 Consequences of hierarchical allocation for the evolution of life history traits.Am. Nat. 161, 153–167.PubMedCrossRefGoogle Scholar
  297. Xue L. and Noll M. 2000Drosophila female sexual behaviour induced by males showing copulation complementation.Proc. Natl. Acad. Sci. USA 97, 3272–3275.PubMedCrossRefGoogle Scholar
  298. Zamudio K. R., Huey R. B. and Crill W. D. 1995 Bigger isn’t always better: body size, developmental and parental temperature and male territorial success inDrosophila melanogaster.Anim. Behav. 49, 671–677.Google Scholar
  299. Zwaan B. J. 1999 The evolutionary genetics of ageing and longevity.Heredity 82, 589–597.PubMedCrossRefGoogle Scholar
  300. Zwaan B. J., Bijlsma R. and Hoekstra R. F. 1991 On the developmental theory of ageing. I. Starvation resistance and longevity inDrosophila melanogaster in relation to pre-adult breeding conditions.Heredity 66, 29–39.PubMedCrossRefGoogle Scholar
  301. Zwaan B. J., Bijlsma R. and Hoekstra R. F. 1995a Artificial selection for development time inDrosophila melanogaster in relation to the evolution of aging: direct and correlated responses.Evolution 49, 635–648.CrossRefGoogle Scholar
  302. Zwaan B. J., Bijlsma R. and Hoekstra R. F. 1995b Direct selection on life span inDrosophila melanogaster.Evolution 49, 649–659.CrossRefGoogle Scholar
  303. Zwaan B. J., Azevedo R. B. R., James A. C., van’t Land J. and Partridge L. 2000 Cellular basis of wing size variation inDrosophila melanogaster: a comparison of latitudinal clines on two continents.Heredity 84, 338–347.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  1. 1.Evolutionary Biology Laboratory, Evolutionary and Organismal Biology UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations