Skip to main content
Log in

Extreme nuclear disproportion and constancy of enzyme activity in a heterokaryon ofNeurospora crassa

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Heterokaryons ofNeurospora crassa were generated by transformation of multinucleate conidia of ahistidine-3 auxotroph withhis-3 + plasmid. In one of the transformants, propagated on a medium with histidine supplementation, a gradual but drastic reduction occurred in the proportion of prototrophic nuclei that contained an ectopically integratedhis-3 + allele. This response was specific to histidine. The reduction in prototrophic nuclei was confirmed by several criteria: inoculum size test, hyphal tip analysis, genomic Southern analysis, and by visual change in colour of the transformant incorporating genetic colour markers. Construction and analyses of three-component heterokaryons revealed that the change in nuclear ratio resulted from interaction of auxotrophic nucleus with prototrophic nucleus that contained an ectopically integratedhis-3 + gene, but not with prototrophic nucleus that containedhis-3 + gene at the normal chromosomal location. The growth rate of heterokaryons and the activity of histidinol dehydrogenase—the protein encoded by thehis-3 + gene-remained unchanged despite prototrophic nuclei becoming very scarce. The results suggest that not all nuclei in the coenocytic fungal mycelium may be active simultaneously, the rare active nuclei being sufficient to confer the wild-type phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry E. W. 2002 Spore killer sensitive isolates become the killers in heterokaryons.Fungal Genet. Newsl. 49 (suppl.), 19.

    Google Scholar 

  • Burnett J. H. 1976Fundamentals of mycology, chapter 16. Edward Arnold, London.

    Google Scholar 

  • Creaser E. H., Bennett D. J. and Drysdale R. B. 1967 The purification and properties of histidinol dehydrogenase fromNeurospora crassa.Biochem. J. 103, 36–41.

    PubMed  CAS  Google Scholar 

  • Davis R. H. 1960 Adaptation in pantothenate-requiringNeuro-spora. II. Nuclear competition during adaptation.Am. J. Bot. 47, 648–654.

    Article  Google Scholar 

  • Davis R. H. 2000Neurospora: contributions of a model organism. Oxford University Press, New York.

    Google Scholar 

  • Flint H. J., Tateson R. W., Barthelmess I. B., Porteous D. J., Donachie W. D. and Kacser H. 1981 Control of flux in the arginine pathway ofNeurospora crassa. Modulations of enzyme activity and concentration.Biochem. J. 200, 231–246.

    PubMed  CAS  Google Scholar 

  • Griffiths A. J. F. 1998 The kalilo family of fungal plasmids.Bot. Bull. Acad. Sin. 39, 147–152.

    CAS  Google Scholar 

  • Grigg G. W. 1960 Phenotypic lag inNeurospora.Heredity 14, 207–210.

    Google Scholar 

  • Legerton T. L. and Yanofsky C. 1985 Cloning and characterization of the multifunctionalhis-3 gene ofNeurospora crassa.Gene 39, 129–140.

    Article  PubMed  CAS  Google Scholar 

  • Loo M. 1976 Some required events in conidial germinationof Neurospora crassa.Dev. Biol. 54, 201–213.

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari R. 2000 Microconidia ofNeurospora crassa.Fungal Genet. Biol. 26, 1–18.

    Article  Google Scholar 

  • Newmeyer D. 1984Neurospora mutants sensitive both to mutagens and to histidine.Curr. Genet. 9, 63–74.

    Article  Google Scholar 

  • Perkins D. D., Radford A. and Sachs M. S. 2001The Neuro-spora compendium. Academic Press, San Diego.

    Google Scholar 

  • Pitchaimani K. and Maheshwari R. 2000 Phenotypic lag in microconidia ofN. crassa his-3+ transformants and its implication in estimation of nuclear ratios.Fungal Genet. Newsl. 47, 89–91.

    Google Scholar 

  • Pittenger T. H. and Brawner T. G. 1961 Genetic control of nuclear selection inNeurospora heterokaryons.Genetics 46, 1645–1663.

    PubMed  CAS  Google Scholar 

  • Raju N. B. 1984 Use of enlarged cells and nuclei for studying mitosis inNeurospora.Protoplasma 121, 87–98.

    Article  Google Scholar 

  • Rao P. N. and Johnson R. T. 1970 Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis.Nature 225, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Ryan F. J. 1946 Back-mutation and adaptation of nutritional mutants.Cold Spring Harbor Symp. Quant. Biol. 11, 215–227.

    Google Scholar 

  • Ryan F. J. and Lederberg J. 1946 Reverse mutation and adaptation in leucinelessNeurospora.Proc. Natl. Acad. Sci. USA 32, 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder A. L., Inoue H. and Sachs M. S. 1997 DNA repair inNeurospora. InDNA damage and repair, Vol. 1, DNA repair in prokaryotes and lower eukaryotes (ed. J. A. Nickoloff and M. F. Hoekstra), pp. 503–538. Humana Press, New Jersey.

    Google Scholar 

  • Serna L. and Stadler D. 1978 Nuclear division cycle in germinating conidia ofNeurospora crassa.J. Bacteriol. 136, 341–351.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Maheshwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitchaimani, K., Maheshwari, R. Extreme nuclear disproportion and constancy of enzyme activity in a heterokaryon ofNeurospora crassa . J Genet 82, 1–6 (2003). https://doi.org/10.1007/BF02715873

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715873

Keywords

Navigation