Skip to main content
Log in

Circadian clocks and life-history related traits: Is pupation height affected by circadian organization inDrosophila melanogaster?

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

InD. melanogaster, the observation of greater pupation height under constant darkness than under constant light has been explained by the hypothesis that light has an inhibitory effect on larval wandering behaviour, preventing larvae from crawling higher up the walls of culture vials prior to pupation. If this is the only role of light in affecting pupation height, then various light : dark regimes would be predicted to yield pupation heights intermediate between those seen in constant light and constant darkness. We tested this hypothesis by measuring pupation height under various light : dark regimes in four laboratory populations ofDrosophila melanogaster. Pupation height was the greatest in constant darkness, intermediate in constant light, and the least in a light/dark regime of LD 14:14 h. The results clearly suggest that there is more to light regime effects on pupation height than mere behavioural inhibition of wandering larvae, and that circadian organization may play some role in determining pupation height, although the details of this role are not yet clear. We briefly discuss these results in the context of the possible involvement of circadian clocks in life-history evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann M., Bijlsma R., James A. C., Partridge L., Zwaan B. J. and Stearns S. C. 2001 Effects of assay conditions in life history experiments withDrosophila melanogaster.J. evol. Biol. 14, 199–209.

    Article  Google Scholar 

  • Bakker K. 1959 Feeding period, growth and pupation in larvae ofDrosophila melanogaster.Entomol. Exp. Appl. 2, 171–186.

    Article  Google Scholar 

  • Bakker K. and Nelissen F. X. 1963 On the relations between the duration of the larval and pupal period, weight and diurnal rhythm in emergence inDrosophila melanogaster.Entomol. Exp. Appl. 6, 37–52.

    Google Scholar 

  • Bauer S. J. 1984 Sex differences in pupation site choice inDrosophila melanogaster.Dros. Inf. Ser. 60, 58.

    Google Scholar 

  • Berreur P., Poncheron P., Berreur-Bennefant J. and Simpson P. 1979 Ecdysone levels and pupariation in a temperature sensitive mutation ofDrosophila melanogaster.J. exp. Biol. 210, 333–373.

    Google Scholar 

  • Chippindale A. K., Alipaz J. A., Chen H. W. and Rose M. R. 1997 Experimental evolution of accelerated development inDrosophila. 1. Developmental speed and larval survival.Evolution 51, 1536–1551.

    Article  Google Scholar 

  • Chandrashekaran M. K., Johnsson A. and Engelmann W. 1973 Possible‘dawn’ and‘dusk’ roles of light pulses shifting the phase of circadian rhythm.J. Comp. Physiol. 82, 347–356.

    Article  Google Scholar 

  • David J. R., Allemand R., van Herrewege J. and Cohet Y. 1983 Ecophysiology: abiotic factors. InThe Genetics and Biology of Drosophila (ed. M Ashburner, H. L. Carson, J. N. Thompson Jr), pp. 105–170. Academic Press, London.

    Google Scholar 

  • Davidowitz G., D’Amico L. J. and Nijhout H. F. 2003 Critical weight in the development of insect body size.Evol. Dev. 5, 188–197.

    Article  PubMed  Google Scholar 

  • De Souza H. M. L., Da Cunha A. B. and Dos Santos E. P. 1970 Adaptive polymorphism of behavior evolved in laboratory populations ofDrosophila willistoni.Am. Nat. 104, 175–189.

    Article  Google Scholar 

  • Eeken J. C. J. 1974 Circadian control of the cellular response to \-ecdysone inDrosophila lebanonensis. I. Experimental puff induction and its relation to puparium formation.Chromosoma 49, 205–217.

    Article  PubMed  CAS  Google Scholar 

  • Joshi A. and Mueller L. D. 1993 Directional and stabilizing density-dependent natural selection for pupation height inDrosophila melanogaster.Evolution 47, 176–184.

    Article  Google Scholar 

  • Joshi A. and Mueller L. D. 1996 Density-dependent natural selection inDrosophila: trade-offs between larval food acquisition and utilization.Evol. Ecol. 10, 463–474.

    Article  Google Scholar 

  • Klarsfeld A. and Rouyer F. 1998 Effects of circadian mutations and LD periodicity on the life span ofDrosophila melanogaster.J. Biol. Rhythms 13, 471–478.

    Article  PubMed  CAS  Google Scholar 

  • Kyriacou C. P., Oldroyd M., Wood J., Sharp M. and Hill M. 1990 Clock mutations alter developmental timing inDrosophila.Heredity 64, 395–401.

    PubMed  Google Scholar 

  • Markow T. A. 1979 A survey of intraand inter-specific variation for pupation height inDrosophila.Behav. Genet. 9, 209–217.

    Article  PubMed  CAS  Google Scholar 

  • Markow T. A. 1981 Light-dependent pupation site inDrosophila.Behav. Neural. Biol. 31, 348–353.

    Article  PubMed  CAS  Google Scholar 

  • Manning M. and Markow T. A. 1981 Light-dependent pupation site preferences inDrosophila. II.Drosophila melanogaster andDrosophila simulans.Behav. Genet. 11, 557–563.

    Article  PubMed  CAS  Google Scholar 

  • McDonald M. J. and Rosbash M. 2001 Microarray analysis and organization of circadian gene expression inDrosophila.Cell 107, 567–578.

    Article  PubMed  CAS  Google Scholar 

  • Miyatake T. 1997 Correlated responses to selection for developmental period inBactrocera cucurbitae (Diptera: Tephritidae): time of mating and daily activity rhythms.Behav. Genet. 27, 489–498.

    Article  PubMed  CAS  Google Scholar 

  • Miyatake T. 2002 Circadian rhythm and time of mating inBactrocera cucurbitae (Diptera: Tephritidae) selected for age at reproduction.Heredity 88, 302–306.

    Article  PubMed  Google Scholar 

  • Mueller L. D. and Sweet V. F. 1986 Density-dependent natural selection inDrosophila: evolution of pupation height.Evolution 40, 1354–1356.

    Article  Google Scholar 

  • Paranjpe D. A., Anitha D., Kumar S., Kumar D., Verkhedkar K., Chandrashekaran M. K., Joshi A. and Sharma V. K. 2003 Entrainment of eclosion rhythm inDrosophila melanogaster populations reared for more than 700 generations in constant light environment.Chronobiol. Int. 20, 1–11.

    Article  Google Scholar 

  • Pittendrigh C. S. 1960 Circadian rhythms and the circadian organization of living systems.Cold Spr. Harb. Symp. Quant. Biol. 25, 159–184.

    CAS  Google Scholar 

  • Pittendrigh C. S. and Skopik S. D. 1970 Circadian systems, V. The driving oscillation and the temporal sequence of development.Proc. Natl. Acad. Sci. USA 65, 500–507.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh C. S. and Minis D. H. 1972 Circadian systems: Longevity as a function of circadian resonance inDrosophila melanogaster.Proc. Natl. Acad. Sci. USA 69, 1537–1539.

    Article  PubMed  CAS  Google Scholar 

  • Prasad N. G. and Joshi A. 2003 What have two decades of laboratory life-history evolution studies onDrosophila melanogaster taught us?J. Genet. 82, 45–76.

    PubMed  CAS  Google Scholar 

  • Prasad N. G., Shakarad M., Anitha D., Rajamani M. and Joshi A. 2001 Correlated responses to selection for faster development and early reproduction inDrosophila: the evolution of larval traits.Evolution 55, 1363–1372.

    PubMed  CAS  Google Scholar 

  • Rensing L. and Hardeland R. 1967 Zur Wirkung der circadianen Rhythmik auf die Entwicklung vonDrosophila.J. Insect Physiol. 13, 1547–1568.

    Article  Google Scholar 

  • Rizki M. T. M. and Davis C. G. Jr. 1953 Light as an ecological determinant of interspecific competition betweenD. willistoni andD. melanogaster.Am. Nat. 87, 389–392.

    Article  Google Scholar 

  • Robertson F. W. 1963 The ecological genetics of growth inDrosophila 6. The genetic correlation between the duration of the larval period and body size in relation to larval diet.Genet. Res. 4, 74–92.

    Article  Google Scholar 

  • Schnebel E. M. and Grossfield J., 1986 The influence of light on pupation height inDrosophila.Behav. Genet. 16, 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Sheeba V., Sharma V. K., Chandrashekaran M. K. and Joshi A. 1999 Effect of different light regimes on pre-adult fitness inDrosophila melanogaster populations reared in constant light for over six hundred generations.Biol. Rhythm Res. 30, 424–433.

    Article  Google Scholar 

  • Sheeba V., Sharma V. K., Shubha K., Chandrashekaran M. K. and Joshi A. 2000 The effect of different light regimes on adult life span inDrosophila melanogaster is partly mediated through reproductive output.J. Biol. Rhythms 15, 380–392.

    Article  PubMed  CAS  Google Scholar 

  • Sokal R. R., Ehrlich P. R., Hunter P. E. and Schlager G. 1960 Some factors affecting pupation site ofDrosophila.Ann. Entomol. Soc. Amer. 53, 174–182.

    Google Scholar 

  • StatSoft 1995Statistica Vol. I: General Conventions and Statistics I. StatSoft Inc., Tulsa.

    Google Scholar 

  • von Saint-Paul U. and Aschoff J. 1978 Longevity among BlowfliesPhormia terraenovae R. D. kept in non-24 hour lightdark cycles.J. Comp. Physiol. A 127, 191–195.

    Article  Google Scholar 

  • White K. P., Hurban P., Watanabe T. and Hogness D. S. 1997 Coordination ofDrosophila metamorphosis by two ecdysone-induced nuclear receptors.Science 276, 114–117.

    Article  PubMed  CAS  Google Scholar 

  • White K. P., Rifkin S. A., Hurban P. and Hogness D. S. 1999 Microarray analysis ofDrosophila development during metamorphosis.Science 286, 2179–2184.

    Article  PubMed  CAS  Google Scholar 

  • Wu Q., Wen T., Lee G., Park J. H., Cai H. N. and Shen P. 2003 Developmental control of foraging and social behaviour by theDrosophila neuropeptide Y-like system.Neuron 39, 147–161.

    Article  PubMed  CAS  Google Scholar 

  • Zordan M., Costa R., Macino G., Fukuhara C. and Tosini G. 2000 Circadian clocks: what makes them tick?Chronobiol. Int. 17, 433–451.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabh Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paranjpe, D.A., Anitha, D., Sharma, V.K. et al. Circadian clocks and life-history related traits: Is pupation height affected by circadian organization inDrosophila melanogaster?. J Genet 83, 73–77 (2004). https://doi.org/10.1007/BF02715831

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715831

Keywords

Navigation