Skip to main content
Log in

The contribution of ancestry, chance, and past and ongoing selection to adaptive evolution

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The relative contributions of ancestry, chance, and past and ongoing election to variation in one adaptive (larval feeding rate) and one seemingly nonadaptive (pupation height) trait were determined in populations ofDrosophila melanogaster adapting to either low or high larval densities in the laboratory. Larval feeding rates increased rapidly in response to high density, and the effects of ancestry, past selection and chance were ameliorated by ongoing selection within 15–20 generations. Similarly, in populations previously kept at high larval density, and then switched to low larval density, the decline of larval feeding rate to ancestral levels was rapid (15-20 generations) and complete, providing support for a previously stated hypothesis regarding the costs of faster feeding inDrosophila larvae. Variation among individuals was the major contributor to variation in pupation height, a trait that would superficially appear to be nonadaptive in the environmental context of the populations used in this study because it did not diverge between sets of populations kept at low versus high larval density for many generations. However, the degree of divergence among populations (FST) for pupation height was significantly less than expected for a selectively neutral trait, and we integrate results from previous studies to suggest that the variation for pupation height among populations is constrained by stabilizing selection, with a flat, plateau-like fitness function that, consequently, allows for substantial phenotypic variation within populations. Our results support the view that the genetic imprints of history (ancestry and past selection) in outbreeding sexual populations are typically likely to be transient in the face of ongoing selection and recombination. The results also illustrate the heuristic point that different forms of selection-for example directional versus stabilizing selection—acting on a trait in different populations may often not be due to differently shaped fitness functions, but rather due to differences in how the fitness function maps onto the actual distribution of phenotypes in a given population. We discuss these results in the light of previous work on reverse evolution, and the role of ancestry, chance, and past and ongoing selection in adaptive evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer S. J. and Sokolowski M. B. 1985 A genetic analysis of path length and pupation height in a natural population ofDrosophila melanogaster.Can. J. Genet. Cytol. 27, 334–340.

    Google Scholar 

  • Bürger R. and Gimelfarb A. 1999 Genetic variation maintained in multilocus models of additive quantitative traits under stabilizing selection.Genetics 152, 807–820.

    PubMed  Google Scholar 

  • Burnet B., Sewell D. and Bos M. 1977 Genetic analysis of larval feeding behaviour inDrosophila melanogaster. II. Growth relations and competition between selected lines.Genet. Res. 30, 149–161.

    Article  Google Scholar 

  • Chippindale A. K., Alipaz J. A., Chen H. W. and Rose M. R. 1997 Experimental evolution of accelerated development inDrosophila. 1. Developmental speed and larval survival.Evolution 51, 1536–1551.

    Article  Google Scholar 

  • Cohan F. M. and Hoffmann A. A. 1989 Uniform selection as a diversifying force in evolution: evidence fromDrosophila.Am. Nat. 134, 613–637.

    Article  Google Scholar 

  • Falconer D. S. 1981Introduction to quantitative genetics, 2nd edition. Longman, London.

    Google Scholar 

  • Gimelfarb A. 1989 Genotypic variance for a quantitative character maintained under stabilizing selection without mutations: epistasis.Genetics 123, 217–227.

    PubMed  CAS  Google Scholar 

  • Gould S. J. and Lewontin R. C. 1979 The spandrels of San Marco and the Panglossian paradigm. A critique of the adaptationist programme.Proc. R. Soc. London. B205, 581–598.

    Article  Google Scholar 

  • Guo P.-Z., Mueller L. D. and Ayala F. J. 1991 Evolution of behaviour by density-dependent natural selection.Proc. Natl. Acad. Sci. USA 88, 10905–10906.

    Article  PubMed  CAS  Google Scholar 

  • Hartl D. L. and Clark A. G. 1989Principles of population genetics, 2nd edition. Sinauer, Sunderland.

    Google Scholar 

  • Ives P. T. 1970 Further studies of the South Amherst population ofDrosophila melanogaster.Evolution 24, 507–518.

    Article  Google Scholar 

  • Joshi A. and Mueller L. D. 1988 Evolution of higher feeding rate inDrosophila due to density-dependent natural selection.Evolution 42, 1090–1092.

    Article  Google Scholar 

  • Joshi A. and Mueller L. D. 1993 Directional and stabilizing density-dependent natural selection for pupation height inDrosophila melanogaster.Evolution 47, 176–184.

    Article  Google Scholar 

  • Joshi A. and Mueller L. D. 1996 Density-dependent natural selection in Drosophila: trade-offs between larval food acquisition and utilization.Evol. Ecol. 10, 463–474.

    Article  Google Scholar 

  • Joshi A. and Thompson J. N. 1995 Alternative routes to the evolution of competitive ability in two competing species ofDrosophila.Evolution 49, 616–625.

    Article  Google Scholar 

  • Joshi A. and Thompson J. N. 1996 Evolution of broad and specific competitive ability in novel versus familiar environments inDrosophila species.Evolution 50, 188–194.

    Article  Google Scholar 

  • Joshi A. and Thompson J. N. 1997 Adaptation and specialization in a two-resource environment inDrosophila species.Evolution 51, 846–855.

    Article  Google Scholar 

  • Kimura M. 1968 Evolutionary rate at the molecular level.Nature 217, 624–626.

    Article  PubMed  CAS  Google Scholar 

  • King J. L. and Jukes T. L. 1969 Non-Darwinan evolution.Science 164, 788–798.

    Article  PubMed  CAS  Google Scholar 

  • Leips J. and Mackay T. F. C. 2000 Quantitative trait loci for life span inDrosophila melanogaster: interactions with genetic background and larval density.Genetics 155, 1773–1788.

    PubMed  CAS  Google Scholar 

  • Lenski R. E. and Travisano M. 1994 Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations.Proc. Natl. Acad. Sci. USA 91, 6808–6814.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd E. A. and Gould S. J. 1993 Species selection on variability.Proc. Natl. Acad. Sci. USA 90, 595–599.

    Article  PubMed  CAS  Google Scholar 

  • Long A. D. and Singh R. S. 1995 Molecules versus morphology: the detection of selection acting on morphological characters along a cline inDrosophila melanogaster.Heredity 74, 569–581.

    PubMed  Google Scholar 

  • Markow T. A. 1979 A survey of intra- and inter-specific variation for pupation height inDrosophila. Behav.Genet. 9, 209–217.

    CAS  Google Scholar 

  • Mayr E. 1983 How to carry out the adaptationist program?Am. Nat. 121, 324–334.

    Article  Google Scholar 

  • Mueller L. D. 1990 Density-dependent natural selection does not increase efficiency.Evol. Ecol. 4, 290–297.

    Article  Google Scholar 

  • Mueller L. D. 1995 Adaptation and density-dependent natural selection. InGenetics of natural populations: the continuing importance of Theodosius Dobzhansky (ed. L. Levine), pp. 101–124. Columbia University Press, New York.

    Google Scholar 

  • Mueller L. D. and Sweet V. F. 1986 Density-dependent natural selection in Drosophila: evolution of pupation height.Evolution 40, 1354–1356.

    Article  Google Scholar 

  • Mueller L. D., Guo P. Z. and Ayala F. J. 1991 Density-dependent natural selection and trade-offs in life history traits.Science 253, 433–435.

    Article  PubMed  CAS  Google Scholar 

  • Mueller L. D., Graves J. L. and Rose M. R. 1993 Interactions between density-dependent and age-specific selection inDrosophila melanogaster.Funct. Ecol. 7, 469–479.

    Article  Google Scholar 

  • Mueller L. D., Joshi A. and Borash D. J. 2000 Does population stability evolve?Ecology 81, 1273–1285.

    Article  Google Scholar 

  • Neter J., Wasserman W. and Kutner M. H. 1990Applied linear statistical models: regression, analysis of variance, and experimental design, 3rd edition. Irwin, Boston.

    Google Scholar 

  • Parker G. A. and Maynard Smith J. 1990 Optimality theory in evolutionary biology.Nature 348, 27–33.

    Article  Google Scholar 

  • Pletcher S. D., Macdonald S. J., Marguerie R., Certa U., Stearns S. C. and Partridge L. 2002 Genome-wide transcript profiles in aging and calorically restrictedDrosophila melanogaster.Curr. Biol. 12, 712–723.

    Article  PubMed  CAS  Google Scholar 

  • Prasad N. G. and Joshi A. 2003 What have two decades of laboratory life-history evolution studies onDrosophila melanogaster taught us?J. Genet. 82, 45–76.

    PubMed  CAS  Google Scholar 

  • Prasad N. G., Shakarad M., Anitha D., Rajamani M. and Joshi A. 2001 Correlated responses to selection for faster development and early reproduction in Drosophila: the evolution of larval traits.Evolution 55, 1363–1372.

    PubMed  CAS  Google Scholar 

  • Prout T. and Barker J. S. F. 1993F statistics inDrosophila buzzatii: selection, population size and inbreeding.Genetics 134, 369–375.

    PubMed  CAS  Google Scholar 

  • Rainey P. B. and Travisano M. 1998 Adaptive radiation in a heterogeneous environment.Nature 394, 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Rose M. R. 1982 Antagonistic pleiotropy, dominance, and genetic variation.Heredity 48, 63–78.

    Google Scholar 

  • Rose M. R. 1984 Laboratory evolution of postponed senescence inDrosophila melanogaster.Evolution 38, 1004–1010.

    Article  Google Scholar 

  • Rose M. R., Graves J. L. and Hutchinson E. W. 1990 The use of selection to probe patterns of pleiotropy in fitness characters. InGenetics, evolution and coordination of insect life histories (ed. F. Gilbert), pp. 29–41. Springer, New York.

    Google Scholar 

  • Sameoto D. D. and Miller R. S. 1968 Selection of pupation site byDrosophila melanogaster andD. simulans.Ecology 49, 177–180.

    Article  Google Scholar 

  • Sewell D., Burnet B. and Conolly K. 1975 Genetic analysis of larval feeding behaviour inDrosophila melanogaster.Genet. Res. 24, 163–173.

    Article  Google Scholar 

  • Sokolowski M. B. 1980 Foraging strategies ofDrosophila melanogaster: a chromosomal analysis.Behav. Genet. 10, 291–302.

    Article  PubMed  CAS  Google Scholar 

  • Sokolowski M. B. and Bauer S. J. 1989 Genetic analyses of pupation distance inDrosophila melanogaster.Heredity 62, 177–183.

    PubMed  Google Scholar 

  • Teótonio H. and Rose M. R. 2000 Variation in the reversibility of evolution.Nature 408, 463–466.

    Article  PubMed  Google Scholar 

  • Teótonio H. and Rose M. R. 2001 Perspective: reverse evolution.Evolution 55, 653–660.

    Article  PubMed  Google Scholar 

  • Teótonio H., Matos M. and Rose M. R. 2002 Reverse evolution of fitness inDrosophila melanogaster.J. Evol. Biol. 15, 608–617.

    Article  Google Scholar 

  • Thompson J. N. 1994The coevolutionary process. University of Chicago Press, Chicago.

    Google Scholar 

  • Travisano M. and Lenski R. E. 1996 Long-term experimental evolution inEscherichia coli. IV. Targets of selection and the specificity of adaptation.Genetics 143, 15–26.

    PubMed  CAS  Google Scholar 

  • Travisano M., Mongold J. A., Bennett A. F. and Lenski R. E. 1995 Experimental tests of the roles of adaptation, chance, and history in evolution.Science 267, 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Vieira C., Pasyukova E. G., Zeng Z. B., Hackett J. B., Lyman R. F. and Mackay T. F. C. 2000 Genotype-environment interaction for quantitative trait loci affecting life span inDrosophila melanogaster.Genetics 154, 213–227.

    PubMed  CAS  Google Scholar 

  • Wade M. J. and Kalisz S. 1990 The causes of natural selection.Evolution 44, 1947–1955.

    Article  Google Scholar 

  • White K. P., Rifkin S. A., Hurban P. and Hogness D. S. 1999 Microarray analysis ofDrosophila development during metamorphosis.Science 286, 2179–2184.

    Article  PubMed  CAS  Google Scholar 

  • Williams G. C. 1992Natural selection: domain, levels and challenges. Oxford University Press, Oxford.

    Google Scholar 

  • Wright S. 1951 The genetic structure of populations.Ann. Eugen. 15, 323–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabh Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, A., Castillo, R.B. & Mueller, L.D. The contribution of ancestry, chance, and past and ongoing selection to adaptive evolution. J Genet 82, 147–162 (2003). https://doi.org/10.1007/BF02715815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715815

Keywords

Navigation