Journal of Genetics

, 82:133 | Cite as

The devil in the details of life-history evolution: Instability and reversal of genetic correlations during selection onDrosophila development

  • Adam K. Chippindale
  • Anh L. Ngo
  • Michael R. Rose


The evolutionary relationships between three major components of Darwinian fitness, development rate, growth rate and preadult survival, were estimated using a comparison of 55 distinct populations ofDrosophila melanogaster variously selected for age-specific fertility, environmental-stress tolerance and accelerated development. Development rate displayed a strong net negative evolutionary correlation with weight at eclosion across all selection treatments, consistent with the existence of a size-versus-time tradeoff between these characters. However, within the data set, the magnitude of the evolutionary correlation depended upon the particular selection treatments contrasted. A previously proposed tradeoff between preadult viability and growth rate was apparent only under weak selection for juvenile fitness components. Direct selection for rapid development led to sharp reductions in both growth rates and viability. These data add to the mounting results from experimental evolution that illustrate the sensitivity of evolutionary correlations to (i) genotype-by-environment (G X E) interaction, (ii) complex functional-trait interactions, and (iii) character definition. Instability, disappearance and reversal of patterns of genetic covariation often occur over short evolutionary time frames and as the direct product of selection, rather than some stochastic process. We suggest that the functional architecture of fitness is a rapidly evolving matrix with reticulate properties, a matrix that we understand only poorly.


evolution life history genetic correlation experimental evolution growth rate Drosophila melanogaster 


  1. Ackermann M., Bijlsma R., James A. C., Partridge L., Zwaan B. J. and Stearns S. C. 2001 Effects of assay conditions in life-history experiments withDrosophila melanogaster.J. Evol. Biol. 14, 199–209.CrossRefGoogle Scholar
  2. Archer M. A., Phelan J. P., Beckman K. A. and Rose M. R. 2003 Breakdown in correlations during laboratory evolution. II. Comparative analyses ofDrosophila populations.Evolution 57, 536–543.PubMedGoogle Scholar
  3. Bell A. E. and Burris M. J. 1973 Simultaneous selection for two correlated traits inTribolium.Genet. Res. 21, 29–46.CrossRefGoogle Scholar
  4. Bell G. 1997Selection: the mechanism of evolution. Chapman and Hall, New York.Google Scholar
  5. Cheverud J. M. 1984 Quantitative genetics and developmental constraints on evolution by selection.J. Theor. Biol. 110, 155–171.PubMedGoogle Scholar
  6. Chippindale A. K., Leroi A. M., Kim S. B. and Rose M. R. 1993 Phenotypic plasticity and selection inDrosophila lifehistory evolution. I. Nutrition and the cost of reproduction.J. Evol. Biol. 6, 171–193.CrossRefGoogle Scholar
  7. Chippindale A. K., Hoang D. T., Service P. M. and Rose M. R. 1994 The evolution of development inDrosophila selected for postponed senescence.Evolution 48, 1880–1899.CrossRefGoogle Scholar
  8. Chippindale A. K., Chu T. J. F. and Rose M. R. 1996 Complex tradeoffs and the evolution of starvation resistance inDrosophila.Evolution 50, 753–766.CrossRefGoogle Scholar
  9. Chippindale A. K., Alipaz J. A., Chen H.-W. and Rose M. R. 1997 Experimental evolution of accelerated development inDrosophila. 1. Larval development speed and survival.Evolution 51, 1536–1551.CrossRefGoogle Scholar
  10. Chippindale A. K., Gibbs A. G., Sheik M., Yee K. J., Djawdan M., Bradley T. J. and Rose M. R. 1998 Resource acquisition and the evolution of stress resistance inDrosophila melanogaster.Evolution 52, 1342–1352.CrossRefGoogle Scholar
  11. Chippindale A. K., Alipaz J. A. and Rose M. R. Experimental evolution of accelerated development inDrosophila. 2. Adult fitness and the fast development syndrome. InMethuselah flies: a case study in laboratory evolution (ed. M. R. Rose, H. K. Passananti and M. Matos). World Scientific, New York (in press).Google Scholar
  12. Clark A. G. 1987 Genetic correlations: the quantitative genetics of evolutionary constraints. InGenetic constraints on adaptive evolution (ed. V. Loeschcke), pp. 25–45. Springer, Berlin.Google Scholar
  13. Clayton G. A., Knight G. R., Morris J. A. and Robertson A. 1957 An experimental check on quantitative genetic theory. I. Short-term responses to selection.J. Genet. 55, 171–180.Google Scholar
  14. Crill W. D., Huey R. B. and Gilchrist G. W. 1996 Within- and between-generation effects of temperature on the morphology and physiology ofDrosophila melanogaster.Evolution 50, 1205–1218.CrossRefGoogle Scholar
  15. Djawdan M., Chippindale A. K., Rose M. R. and Bradley T. J. 1998 Metabolic reserves and evolved stress resistance inDrosophila melanogaster.Physiol. Zool. 71, 584–559.PubMedGoogle Scholar
  16. Gibbs A. G. 1999 Laboratory selection for the comparative physiologist.J. Exp. Biol. 202, 2709–2718.PubMedGoogle Scholar
  17. Hoffmann A. A. and Harshman L. G. 2000 Laboratory selection experiments using Drosophila: what do they really tell us?Trends Ecol. Evol. 15, 32–36.PubMedCrossRefGoogle Scholar
  18. Houle D. 1991 Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters.Evolution 45, 630–648.CrossRefGoogle Scholar
  19. Houle D. and Rowe L. 2003 Natural selection in a bottle.Am. Nat. 161, 50–67.PubMedCrossRefGoogle Scholar
  20. Ives P. T. 1970 Further studies of the South Amherst population ofDrosophila melanogaster.Evolution 38, 507–518.CrossRefGoogle Scholar
  21. Lande R. 1982 A quantitative genetic theory of life history evolution.Ecology 63, 607–615.CrossRefGoogle Scholar
  22. Leroi A. M., Chippindale A. K. and Rose M. R. 1994a Longterm laboratory evolution of a genetic life-history trade-offStability of genetic inDrosophila melanogaster. 1. The role of genotype-by-environment interaction.Evolution 48, 1244–1257.CrossRefGoogle Scholar
  23. Leroi A. M., Chen W. R. and Rose M. R. 1994b Long-term laboratory evolution of a genetic life-history trade-off inDrosophila melanogaster. 2. Stability of genetic correlations.Evolution 48, 1258–1268.CrossRefGoogle Scholar
  24. Lints F. A. and Gruwez G. 1972 What determines the duration of development inDrosophila melanogaster?Mech. Ageing Dev. 1, 285–297.Google Scholar
  25. Matos M. and Avelar T. 2001 Adaptation to the laboratory: comments on SgrÒ and Partridge.Am. Nat. 158, 655–656.CrossRefPubMedGoogle Scholar
  26. Matos M., Rose M. R., Rocha Pité M. T., Rego C. and Avelar T. 2000 Adaptation to the laboratory environment inDrosophila subobscura.J. Evol. Biol. 13, 9–19.CrossRefGoogle Scholar
  27. Matos M., Avelar T. and Rose M. R. 2002 Variation in the rate of convergent evolution: adaptation to a laboratory environment inDrosophila subobscura.J. Evol. Biol. 15, 673–682.CrossRefGoogle Scholar
  28. Maynard Smith J., Burian R., Kauffman S., Alberch P., Campbell J., Goodwin B., Lande R., Raup D. and Wolpert L. 1985 Developmental constraints and evolution.Quart. Rev. Biol. 60, 265–287.CrossRefGoogle Scholar
  29. Mueller L. D. 1985 The evolutionary ecology ofDrosophila.Evol. Biol. 19, 37–98.Google Scholar
  30. Nunney L. 1996 The response to selection for fast larval development inDrosophila and its effect on adult weight: an example of a fitness tradeoff.Evolution 50, 1193–1204.CrossRefGoogle Scholar
  31. Partridge L. and Farquhar M. 1983 Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size.Anim. Behav. 31, 871–877.CrossRefGoogle Scholar
  32. Partridge L. and Fowler K. 1992 Direct and correlated responses to selection on age at reproduction inDrosophila melanogaster.Evolution 46, 76–91.CrossRefGoogle Scholar
  33. Partridge L., Hoffmann A. A. and Jones J. S. 1987 Male size and mating success inDrosophila melanogaster andDrosophila pseudoobscura under field conditions.Anim. Behav. 35, 468–476.CrossRefGoogle Scholar
  34. Phelan J. P., Archer M. A., Beckman K. A., Chippindale A. K. and Rose M. R. 2003 Breakdown in correlations during laboratory evolution. I. Comparative analyses ofDrosophila populations.Evolution 57, 527–535.PubMedGoogle Scholar
  35. Prasad N. G., Shakarad M., Gohil V. M., Sheeba V., Rajamani M. and Joshi A. 2000 Evolution of reduced pre-adult viability and larval growth rate in laboratory populations ofDrosophila melanogaster selected for shorter development time.Genet. Res. 76, 249–259.PubMedCrossRefGoogle Scholar
  36. Reznick D. 1992 Measuring the costs of reproduction.Trends Ecol. Evol. 7, 42–45.CrossRefGoogle Scholar
  37. Robertson F. W. 1957 Studies in quantitative inheritance. XI. Genetic and environmental correlation between body size and egg production inDrosophila melanogaster.J. Genet. 55, 428–443.CrossRefGoogle Scholar
  38. Roff D. 1992The evolution of life histories. Chapman and Hall, New York.Google Scholar
  39. Roper C., Pignatelli P. and Partridge L. 1993 Evolutionary effects of selection on age at reproduction in larval and adultDrosophila melanogaster.Evolution 47, 445–455.CrossRefGoogle Scholar
  40. Rose M. R. 1984 Laboratory evolution of postponed senescence inDrosophila melanogaster.Evolution 38, 1004–1010.CrossRefGoogle Scholar
  41. Rose M. R., Graves J. L. and Hutchinson E. W. 1990 The use of selection to probe patterns of fitness characters. InInsect life cycles: genetics, evolution and coordination (ed. F. Gilbert), pp. 29–41. Springer, New York.Google Scholar
  42. Rose M. R., Vu L. N., Park S. U. and Graves J. L. 1992 Selection on stress resistance increases longevity inDrosophila melanogaster.Exp. Gerontol. 27, 241–250.PubMedCrossRefGoogle Scholar
  43. Rose M. R., Nusbaum T. J. and Chippindale A. K. 1996 Laboratory selection: the experimental wonderland and the Cheshire Cat syndrome. InAdaptation (ed. M. R. Rose and G. V. Lauder), pp. 221–242. Academic Press, San Diego.Google Scholar
  44. Rowe L. and Ludwig D. 1991 Size and timing of metamorphosis in complex life cycles: time constraints and variation.Ecology 72, 413–427.CrossRefGoogle Scholar
  45. Service P. M., Hutchinson E. W. and Rose M. R. 1988 Multiple genetic mechanisms for the evolution of postponed senescence inDrosophila melanogaster.Evolution 42, 708–716.CrossRefGoogle Scholar
  46. Sgró C. M. and Partridge L. 2000 Evolutionary responses of the life history of wild-caughtDrosophila melanogaster to two standard methods of laboratory culture.Am. Nat. 156, 341–353.CrossRefGoogle Scholar
  47. Sgró C. M. and Partridge L. 2001 Laboratory adaptation of life history inDrosophila.Am. Nat. 158, 657–658.CrossRefPubMedGoogle Scholar
  48. Shakarad M., Prasad N. G., Rajamani M. and Joshi A. 2001 Evolution of faster development does not lead to greater fluctuating asymmetry of sternopleural bristle number inDrosophila.J. Genet. 80, 1–7.PubMedGoogle Scholar
  49. Stearns S. C. 1992The evolution of life histories. Oxford University Press, Oxford.Google Scholar
  50. Wilkinson G. S., Fowler K. and Partridge L. 1990 Resistance of genetic correlation structure to directional selection inDrosophila melanogaster.Evolution 44, 1990–2003.CrossRefGoogle Scholar
  51. Zwaan B. J., Bijlsma R. and Hoekstra R. F. 1995 Artificial selection for developmental time inDrosophila melanogaster in relation to the evolution of aging: direct and correlated responses.Evolution 49, 635–648.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  • Adam K. Chippindale
    • 1
  • Anh L. Ngo
    • 2
  • Michael R. Rose
    • 2
  1. 1.Department of BiologyQueen’s UniversityKingstonCanada
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations