Skip to main content

Perinatal lung mechanics and the first breath

Abstract

Mechanical properties of the liquid-filled fetal lung are similar to those of the adult lung in so far as pulmonary tissue offers little resistance to volume change, but not to liquid flow, throughout its volume range. Contrary to what has been held, fetal lungs are not highly plastic. As fetal development progresses, tissue elastance probably falls as tissue-to-potential airspace density decreases. At the same time, liquid in future airspaces is enriched with phospholipid surfactants secreted by maturing type 2 saccular epithelial cells. When air-breathing begins at birth, dispersion of air into surfactant-rich liquid ofmature lungs results in formation of stable bubbles, the films of which achieve surface tension near-zero. Saccules are distended by the air-containing bubbles as well as by “free” air in direct communication with the airways. Stable bubbles establish immediate formation of functional residual capacity, continued gas exchange throughout the respiratory cycle, and saccular resistance to collapse as a result of the near-zero surface tension of and the structural stability provided by bubble films. This process produces the mature volume-pressure diagram, both in vivo and in vitro, which is characterized by relatively low opening pressure, high maximal volume, wide hysteresis and retention of large volumes at end-deflation or end-expiration. High expiratory pressures in vivo probably enhance production and distribution of bubbles. Surfactant-poorimmature lungs do not have the capacity to produce stable bubbles. As a consequence, initial aeration requires high opening pressure, achieves proportionately small maximal volume, and results in little hysteresis and gas retention during deflation. This is the underlying pathophysiologic derangement of neonatal respiratory distress syndrome.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Adams FH, Desilets DT, Towers B (1967) Physiology of the fetal larynx and lung. Ann Otol Rhinol Laryngol 76:735–743

    PubMed  CAS  Google Scholar 

  2. 2.

    Adams FH, Desilets DT, Towers B (1967) Control of flow of fetal lung fluid at the laryngeal outlet. Respir Physiol 2:302–309

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Adams FH, Fujiwara T (1963) Surfactant in fetal lamb tracheal fluid. J Pediatr 63:537–542

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Adams FH, Fujiwara T, Rowshan G (1963) The nature and origin of the fluid in the fetal lamb lung. J Pediatr 63:881–888

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Adams FH, Moss AJ, Fagan L (1963) The tracheal fluid in the fetal lamb. Biol Neonate 5:151–158

    CAS  Article  Google Scholar 

  6. 6.

    Addison WHF, How HW (1913) On the prenatal and neonatal lung. Am J Anat 15:199–214

    Article  Google Scholar 

  7. 7.

    Agostoni E, Taglietti A, Agostoni AF, Setnikar I (1958) Mechanical aspects of the first breath. J Appl Physiol 13:344–348

    PubMed  CAS  Google Scholar 

  8. 8.

    Avery ME, Fletcher BD, Williams RG (1981) The lung and its disorders in the newborn infant. Saunders, Philadelphia

    Google Scholar 

  9. 9.

    Avery ME, Mead J (1959) Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child 97:517–523

    CAS  Google Scholar 

  10. 10.

    Bland RD, McMillan DD, Bressack MA (1979) Labor decreases lung water content of newborn rabbits. Am J Obstet Gynecol 134:364–367

    Google Scholar 

  11. 11.

    Boon AW, Milner AD, Hopkin IE (1981) Lung volumes and lung mechanics in babies born vaginally and by elective and emergency lower segmental cesarean section. J Pediatr 98:812–814

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Boon AW, Ward-McQuai JMC, Milner AD, Hopkin IE (1981) Thoracic gas volume, functional residual capacity and air-trapping in the first six hours of life: the effect of oxygen administration. Early Hum Dev 5:157–166

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Bosma JF, Lind J, Gentz N (1959) Motions of the pharynx associated with the initial aeration of the lungs of the newborn. Acta Paediatr Scand [Suppl 117] 48:117–122

    CAS  Article  Google Scholar 

  14. 14.

    Brumley GW, Chernick V, Hodson WA, Normand C, Fenner A, Avery ME (1967) Correlations of mechanical stability, morphology, pulmonary surfactant and phospholipid content in the developing lamb lung. J Clin Invest 46:863–872

    PubMed  CAS  Google Scholar 

  15. 15.

    Colacicco G, Scarpelli EM (1973) Pulmonary surfactants: molecular structure and biological activity. In: Sears DF, Prince LM (eds) Horizons in surface science: biological applications. Academic Press, New York London

    Google Scholar 

  16. 16.

    Condorelli S, Scarpelli EM (1975) Somatic-sensory reflex and onset of regular breathing movements in the lamb fetus in utero. Pediatr Res 9:879–884

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Emery J (1969) Connective tissue and lymphatics. In: Emery J (ed) The anatomy of the developing lung. Heinmann, Suffolk, pp 49–73

    Google Scholar 

  18. 18.

    Engel S (1962) Lung structure. Thomas, Springfield, Ill

    Google Scholar 

  19. 19.

    Fujiwara T, Chida S, Watabe Y, Maeta H, Marita T, Abe T (1980) Artificial surfactant therapy in hyaline-membrane disease. Lancet I:55–59

    Article  Google Scholar 

  20. 20.

    Hance AJ, Crystal RG (1976) Collagen. In: Crystal RG (ed) The biochemical basis of pulmonary function, vol 2: Lung biology in health and disease. Dekker, New York, pp 215–271

    Google Scholar 

  21. 21.

    Jaykka S (1954) A new theory concerning the mechanism of the initiation of respiration in the newborn. Acta Paediatr Scand 43:399–404

    CAS  Article  Google Scholar 

  22. 22.

    Jost A, Policard A (1948) Contribution experimentale a l’etude du developpement prenatal du poumon chez la lapin. Arch Anat Microbiol 37:323–332

    Google Scholar 

  23. 23.

    Karlberg P (1960) The adaptive changes in the immediate postnatal period, with particular reference to respiration. J Pediatr 56:585–604

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Karlberg P, Cherry RB, Escardo FE, Koch G (1962) Respiratory studies in newborn infants. II. Pulmonary ventilation and mechanics of breathing in the first minutes of life, including the onset of respiration. Acta Paediatr Scand 51:121–136

    Google Scholar 

  25. 25.

    Kazenelson G, Adams FH (1968) Qualitative studies of the protein in fetal lamb lung fluid. Proc Soc Exp Biol Med 127:1099–1103

    PubMed  CAS  Google Scholar 

  26. 26.

    Kazenelson G, Schwartz JS, Adams FH (1968) Immunoglobulin in fetal lamb lung and its fluid. Proc Soc Exp Biol Med 129:920–926

    PubMed  CAS  Google Scholar 

  27. 27.

    Kikkawa Y (1975) Morphology and morphologic development of the lung. In: Scarpelli EM, Auld PAM (eds) Pulmonary physiology of the fetus, newborn and child. Lea & Febiger, Philadelphia, pp 37–60

    Google Scholar 

  28. 28.

    Kumar A, Clutario BC, Doyle C, Scarpelli EM (1983) Time-dependency and static mechanics of immature airways and saccules. Respir Physiol 51:195–207

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Milner AD, Saunders RA (1977) Pressure and volume changes during the first breath of human neonates. Arch Dis Child 52:918–924

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Milner AD, Vyas H (1982) Lung expansion at birth. J Pediatr 101:879–886

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Mitzner W, Johnston JWC, Scott T, London WT, Palmer AE (1979) Effect of betamethasone on pressure-volume relationship of fetal rhesus monkey lung. J Appl Physiol 47:377–382

    PubMed  CAS  Google Scholar 

  32. 32.

    Nelson NM (1976) Respiration and circulation after birth. In: Smith CA, Nelson NM (eds) The physiology of the newborn infant. Thomas, Springfield, Ill

    Google Scholar 

  33. 33.

    Normand ICS, Olver RE, Reynolds EOR, Strang LB (1971) Permeability of lung capillaries and alveoli to non-electrolytes in the foetal lung. J Physiol 219:303–330

    PubMed  CAS  Google Scholar 

  34. 34.

    Pattle RE (1955) Properties, function, and origin of the alveolar lining layer. Nature 175:1125–1126

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Pattle RE (1958) Properties, function, and origin of the alveolar lining layer. Proc R Soc Lond [Biol] 148:217–240

    CAS  Article  Google Scholar 

  36. 36.

    Potter EL, Bohlender GP (1941) Intrauterine respiration in relation to the development of the fetal lung. Am J Obstet Gynecol 42:14–22

    Google Scholar 

  37. 37.

    Saunders RA, Milner AD (1978) Pulmonary pressure/volume relationships during the last phase of delivery and the first postnatal breaths in human subjects. J Pediatr 93:667–673

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Scarpelli EM (1967) The lung, tracheal fluid, and lipid metabolism of the fetus. Pediatrics 40:951–961

    PubMed  CAS  Google Scholar 

  39. 39.

    Scarpelli EM (1976) Fetal pulmonary fluid. Rev Perinat Med 1:49–106

    CAS  Google Scholar 

  40. 40.

    Scarpelli EM (1977) The surfactant system of the lung. Int Anesthesiol Clin 15:19–60

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Scarpelli EM (1978) Intrapulmonary foam at birth: an adaptational phenomenon. Pediatr Res 12:1070–1076

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Scarpelli EM, Agasso EJ, Kikkawa J (1971) Demonstration of the significance of pulmonary surfactants at birth. Respir Physiol 12:110–122

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Scarpelli EM, Clutario BC, Mautone AJ, Baum J (1983) Intrasaccular bubbles of nearzero surface tension stabilize neonatal lungs. Pflügers Arch (in press)

  44. 44.

    Scarpelli EM, Clutario BC, Traver D (1979) Failure of immature lungs to produce foam and retain air at birth. Pediatr Res 13:1285–1289

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Scarpelli EM, Condorelli S, Cosmi EV (1975) Lamb fetal pulmonary fluid. I. Validation and significance of method for determination of volume and volume change. Pediatr Res 9:190–195

    PubMed  CAS  Google Scholar 

  46. 46.

    Scarpelli EM, Kumar A, Clutario BC (1983) Near-zero surface tension, intrapulmonary foam and lung mechanics. In: Cosmi EV, Scarpelli EM (eds) Pulmonary surfactant system. Elsevier/North Holland, Amsterdam, pp 3–16

    Google Scholar 

  47. 47.

    Scarpelli EM, Kumar A, Doyle C, Clutario BC (1981) Functional anatomy and volume-pressure characteristics of immature lungs. Respir Physiol 45:25–41

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Scarpelli EM, Mautone AJ (1984) The surfactant system and pulmonary mechanics. In: van Golde LMG, Batenburg JJ, Robertson B (eds) Pulmonary surfactants. Elsevier/North Holland, Amsterdam (in press)

    Google Scholar 

  49. 49.

    Scarpelli EM, Moss IR (1980) Control of fetal and neonatal breathing and its disturbances. Clin Chest Med 1:145–159

    PubMed  CAS  Google Scholar 

  50. 50.

    Scarpelli EM, Moss IR (1983) Transition from fetal to neonatal breathing. In: Gootman N, Gootman PM (eds) Perinatal cardiovascular function. Dekker, New York, pp 43–107

    Google Scholar 

  51. 51.

    Scarpelli EM, Real FJP, Rudolph AM (1965) Tracheal motion during eupnea. J Appl Physiol 20:473–479

    PubMed  CAS  Google Scholar 

  52. 52.

    Strang LB (1977) Neonatal respiration — Physiological and clinical studies. Blackwell, Oxford

    Google Scholar 

  53. 53.

    Taeusch HW Jr, Wyszogrodski I, Wang NS, Avery ME (1974) Pulmonary pressure-volume relationships in premature fetal and newborn rabbits. J Appl Physiol 37:809–813

    PubMed  Google Scholar 

  54. 54.

    Thibeault DW, Wong MM, Auld PAM (1967) Thoracic gas volume changes in premature infants. Pediatrics 40:403–411

    PubMed  CAS  Google Scholar 

  55. 55.

    Vyas H, Milner AD, Hopkin IE (1981) Intrathoracic pressure and volume changes during onset of respiration. J Pediatr 99:787–791

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Walters DV, Olver RE (1978) The role of catecholamines in lung liquid absorption at birth. Pediatr Res 12:239–242

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Walters DV, Olver RE (1983) The role ofβ-adrenergic agents in the control of lung liquid absorption and surfactant release. In: Cosmi EV, Scarpelli EM (eds) Pulmonary surfactant system. Elsevier/North Holland, Amsterdam, pp 111–121

    Google Scholar 

  58. 58.

    Whitehead WH, Windle WF, Becker RF (1942) Changes in lung structure during expiration of amniotic fluid and during air-breathing at birth. Anat Rec 83:255–265

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emile M. Scarpelli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scarpelli, E.M. Perinatal lung mechanics and the first breath. Lung 162, 61–71 (1984). https://doi.org/10.1007/BF02715632

Download citation

Key words

  • Fetus
  • Surfactants
  • Lung stability
  • Neonate
  • Bubbles
  • pulmonary
  • Volume-pressure diagram
  • Breathing
  • onset of
  • Zero surface tension