Advertisement

Practical Failure Analysis

, Volume 2, Issue 6, pp 68–79 | Cite as

Modeling creep damage based on real microstructure

  • Y. Prawoto
  • T. Aizawa
Peer Reviewed Articles

Abstract

This paper outlines a method to model creep failure of polycrystalline materials based on a real microstructure taken from an optical microscope. The creep failure is simulated in 304 stainless steel and the simulation is based on Norton’s creep law. By treating the grain boundaries and the grains differently and adopting the void nucleation process proposed by Shewmon, the creep strain energy density can be used as a failure criterion. The result of the simulation confirmed the results of conventional methods used in a high-temperature remnant life assessment. The intermediate results of the simulation process allow calculation/monitoring of stiffnesses degradation as the material undergoes creep failure.

Keywords

creep failure high-temperature RLA (remnant life assessment) stiffness degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Journaux, P. Gouton, and G. Thauvin:J. Mater. Process. Tech., 2001,117, p. 132.CrossRefGoogle Scholar
  2. 2.
    H.E. Evans:Mechanisms of Creep Fracture, Elsevier Applied Science Publishers, 1985.Google Scholar
  3. 3.
    H.J. Frost and M.E. Ashby:Deformation Mechanisms Maps, The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982.Google Scholar
  4. 4.
    H. Oikawa and T.G. Langdon:Creep Behavior of Crystalline Solids, B. Wilshire and R.W. Evans, Ed., Pineridge Press, 1985, p. 33.Google Scholar
  5. 5.
    S.V. Raj:Mat. Sci. Eng. A., 2002,322, p. 132.CrossRefGoogle Scholar
  6. 6.
    A.K. Mukherjee: “An Examination of the Constitutive Equation for Elevated Temperature Plasticity,”Mat. Sci. Eng. A., 2002,322, pp. 1–22CrossRefGoogle Scholar
  7. 7.
    W.D. Nix and B. Ilschner:Strength of Metals and Alloys, P. Haasen and V. Gerold, Ed., Pergamon Press, Oxford, 1980, p. 1503.Google Scholar
  8. 8.
    A.N. Campbell, S.S. Tao, and D. Turnbull:Acta. Metall. Mater., 1987,35, p. 2453.CrossRefGoogle Scholar
  9. 9.
    P. Keblinski, D. Wolf, and S.R. Phillpot:Interface Sci., 1998,6, p. 205.CrossRefGoogle Scholar
  10. 10.
    C. Hahn and K.S. Kim: “Time-Dependent Crack Growth in Stainless Steel 304 in the Plasticity-Dominant Field,”Eng. Fract. Mech., 2001,68, pp. 39–52.CrossRefGoogle Scholar
  11. 11.
    A.S. Argon, J. Im, and N.R. Moody:Metall. Trans. A., 1975,6, p. 825.CrossRefGoogle Scholar
  12. 12.
    M.W.D. Van Der Burg, E. Van Der Giessen, and R.C. Brouwer: “Investigation of Hydrogen Attack in 2.25Cr-1Mo Steels with a High-Triaxiality Void Growth Model,”Acta. Metall. Mater., 1996,44, pp. 505–518.Google Scholar
  13. 13.
    E.D. Giessen and V. Tvergaard:Mech. Mater., 1994,77, p. 47.Google Scholar
  14. 14.
    H. Riedel:Material Science Technology, vol. 6, R.W. Cahn, P. Haasen, and E.J. Cramer, Ed., VCH Verlag, New York, 1993, p. 565.Google Scholar
  15. 15.
    P. Shewmon and P. Anderson:Acta. Mater., 1998,46, p. 4861.CrossRefGoogle Scholar
  16. 16.
    A.S. Argon:Recent Advances in Creep and Fracture of Engineering Material and Structures, B. Wilshire and D.R.J. Owen, Ed., Pineridge Press, Swansea, 1982, p. 1.Google Scholar
  17. 17.
    P.J. Clemm and J.C. Fisher:Acta. Metall. Mater., 1955,3, p. 70.CrossRefGoogle Scholar
  18. 18.
    H. Riedel: ASTM STP700, ASTM, W. Conshohocken, PA, 1980, p. 112.Google Scholar
  19. 19.
    Y.J. Kim:Int. J. Pres. Ves. Pip., 2000,78, p. 661.CrossRefGoogle Scholar
  20. 20.
    T.L. Anderson:Fracture Mechanics, CRC Press, Inc., 1995.Google Scholar
  21. 21.
    W.C. Carter, S.A. Langer, and E.R. Fuller: “OOF Manual,” NISTIR 6256, 1 Nov 1998.Google Scholar
  22. 22.
    “Theory Reference—ANSYS Release 6.0,” ANSYS, Inc., Canonsburg, PA, 2000.Google Scholar
  23. 23.
    D. Cioranescu and P. Donato:An Introduction to Homogenization, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, New York, 1999.Google Scholar
  24. 24.
    Q.M. Li:Int. J. Solids Struct., 2000,37, p. 4539.CrossRefGoogle Scholar
  25. 25.
    B. Hassani and E. Hinton: “A Review of Homogenization and Topology Optimization,”Comput. Struct., 1998,69, p. 707.CrossRefGoogle Scholar

Copyright information

© ASM International - The Materials Information Society 2002

Authors and Affiliations

  • Y. Prawoto
    • 1
  • T. Aizawa
    • 2
  1. 1.NHK International Co.Wixom
  2. 2.Research Center for Advanced Science and Technology (RCAST)The University of TokyoTokyoJapan

Personalised recommendations