Practical Failure Analysis

, Volume 1, Issue 4, pp 33–38 | Cite as

Microstructural analysis of failure of a stainless steel bone plate implant

  • E. Proverbio
  • L. M. Bonaccorsi
Peer Reviewed Articles


Stainless steel is frequently used for bone fracture fixation in spite of its sensitivity to pitting and cracking in chloride containing environments (such as organic fluids) and its susceptibility to fatigue and corrosion fatigue. A 316L stainless steel plate implant used for fixation of a femoral fracture failed after only 16 days of service and before bone callus formation had occurred. The steel used for the implant met the requirements of ASTM Standard F138 but did contain a silica-alumina inclusion that served as the initiation point for a fatigue/corrosion fatigue fracture. The fracture originated as a consequence of stress intensification at the edge of a screw hole located just above the bone fracture; several fatigue cracks were also observed on the opposite side of the screw hole edge. The crack propagated in a brittle-like fashion after a limited number of cycles under unilateral bending. The bending loads were presumably a consequence of leg oscillation during assisted perambulation.


bone plate corrosion failure analysis fatigue implant stainless steel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.E. Sloter and H.R. Piehler: inCorrosion and Degradation of Implants Materials, ASTM STP 684, B.C. Syrett and A. Acharya, ed., ASTM, Philadelphia, PA, 1979, pp. 173–95.Google Scholar
  2. 2.
    A.A. Amis, J.D. Bromage, and M. Larvin:Biomaterials, 1987, vol. 8(2), pp. 153–57.CrossRefGoogle Scholar
  3. 3.
    D.I. Bardos: inHandbook of Stainless Steels, D. Peckner and I.M. Bernstein, ed., McGraw-Hill, New York, NY, 1977, pp. 42.1–42.10.Google Scholar
  4. 4.
    P.G. Laing:Orthop. Clin. North Am., 1973, vol. 4(2), pp. 249–73.Google Scholar
  5. 5.
    M. Traisnel, D. le Maguer, H.F. Hildebrand, and A. Iost:Clin. Mater., 1990, vol. 5, pp. 309–18.CrossRefGoogle Scholar
  6. 6.
    O.E.M. Pohler: inASM Handbook, Vol. 11,Failure Analysis and Prevention, ASM International, Materials Park, OH, 1995, pp. 670–94.Google Scholar
  7. 7.
    J.M. Spivak, J.D. Zuckerman, F.J. Kummer, and V.H. Frankel:J. Orthop. Trauma, vol. 5(3), pp. 325–331.Google Scholar
  8. 8.
    E. Gautier, S.M. Perren, and J. Cordey:Injury, 2000, vol. 31, Suppl 3, pp. C14-C20.CrossRefGoogle Scholar
  9. 9.
    J.M. Banovetz, R. Sharp, R.A. Probe, and J.O. Anglen:J. Orthop. Trauma, 1996, vol. 10(6), pp. 389–94.CrossRefGoogle Scholar
  10. 10.
    E.W. Lee and H.T. Kim:J. Arthroplasty, 2001, vol. 16(2), pp. 236–38.CrossRefGoogle Scholar
  11. 11.
    A.A. Syed, J.G. Kennedy, H. Mullet, J. O’Flanagan, and D. Taylor:Arch. Orthop. Trauma Surg., 2000, vol. 120(5–6), pp. 366–68.CrossRefGoogle Scholar
  12. 12.
    C. Gaebler, S. Stanzl-Tschegg, E.K. Tschegg, C. Kukla, W.A. Menth-Chiar, G.E. Wozasek, and T. Heinz:Injury, 1999, vol. 30(2), pp. 91–99.CrossRefGoogle Scholar
  13. 13.
    C.M. Styles, S.L. Evans, and P.J. Gregson:Biomaterials, 1998, vol. 19(11–12), pp. 1057–65.CrossRefGoogle Scholar

Copyright information

© ASM International - The Materials Information Society 2001

Authors and Affiliations

  • E. Proverbio
    • 1
  • L. M. Bonaccorsi
    • 1
  1. 1.University of MessinaMessinaItaly

Personalised recommendations